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Abstract

Weird, unusual, and uncanny images pique the curios-
ity of observers because they challenge commonsense. For
example, an image released during the 2022 world cup de-
picts the famous soccer stars Lionel Messi and Cristiano
Ronaldo playing chess, which playfully violates our expec-
tation that their competition should occur on the football
field.1 Humans can easily recognize and interpret these un-
conventional images, but can AI models do the same? We
introduce WHOOPS!, a new dataset and benchmark for vi-
sual commonsense. The dataset is comprised of purpose-
fully commonsense-defying images created by designers us-
ing publicly-available image generation tools like Midjour-
ney. We consider several tasks posed over the dataset. In
addition to image captioning, cross-modal matching, and
visual question answering, we introduce a difficult explana-
tion generation task, where models must identify and ex-
plain why a given image is unusual. Our results show
that state-of-the-art models such as GPT3 and BLIP2 still
lag behind human performance on WHOOPS!. We hope
our dataset will inspire the development of AI models with
stronger visual commonsense reasoning abilities.2

1. Introduction
Upon viewing an unusual image, humans can readily

recognize odd, unusual, and incongruent factors. Consider
the examples in Fig. 1: smartphones did not exist when Ein-
stein was alive (left), and an oxygen-starved candle would
not stay lit for long in a sealed bottle (right). While the
images consist of “normal” constituent objects, composi-
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Albert Einstein holding 
a smartphone

A lit candle inside a 
sealed bottle

What makes this image weird?

Einstein’s death (1955) 
was before the modern 
smartphone was invented 
(2007).

A candle needs a constant 
supply of oxygen to burn, 
which does not exist in a 
sealed bottle.
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Figure 1: We introduce WHOOPS!: a dataset of
commonsense-violating images. Designers create interest-
ing, unusual images using prompt-based image-generation
tools like Midjourney. We pose several tasks over
WHOOPS!, including an explanation generation task. While
humans easily identify the weird elements in each image,
we show that state-of-the-art AI models struggle.

tions make them unusual. Although it’s relatively easy
for humans to identify/explain why an image is unusual,
the multi-step reasoning is sophisticated. Connecting vi-
sual cues to knowledge about the world goes beyond ob-
ject recognition, and requires commonsense derived from
everyday experiences, physical/social knowledge, and cul-
tural norms [32, 39, 19, 33].

In this work, we introduce WHOOPS!,3 a dataset of 500
synthetic images and 10,874 annotations designed to chal-
lenge AI models’ ability to reason about commonsense and

3Weird and HeterogeneOus Objects, Phenomena, and Situations.
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Explanation Generation
Pandas live in the China bamboo forests, subsist 
almost entirely on bamboo, and do not hunt
salmon fish like the grizzly bears.

Model

Image Captioning

A panda bear is catching salmon fish up in the 
river stream.

Model

VQA

ModelQ: What is catching salmon in a stream?

Q: What does a panda bear try to catch?

A panda

A salmon

1. 

2. 

Cross-Modal Matching

ModelC: A panda bear is fishing for salmon

U: A bear is fishing for salmon

sim(Img, C) 
>

sim(Img, U)

3. 

4. 

Figure 2: The WHOOPS! benchmark includes four tasks: 1. generating a detailed explanation for what makes the image
weird, 2. generating a literal caption, 3. distinguishing between detailed and underspecified captions, and 4. answering
questions that test compositional understanding. Inputs to the models are indicated in dark blue.

compositionality. To construct WHOOPS!, we collaborate
with designers who use text-to-image models such as Mid-
journey, DALL-E [28] and Stable-Diffusion [29] to gener-
ate images that would be challenging (or even impossible)
to collect otherwise. First, prompts that contain two plausi-
bly co-occurring elements are constructed, and then, a mod-
ification to one of them is made to create an implausible
combination that violates commonsense. Fig. 1 (left), for
example, was created by our designers thinking of a plau-
sible scene of Albert Einstein holding a notebook, and then
replacing the notebook with a smartphone, which did not
exist at the time. We annotate our images with textual in-
formation, including both descriptive captions and explana-
tions for what makes each image weird.

Next, we pose four visual commonsense reasoning tasks
over the WHOOPS! corpus: (1) explanation generation,
where models provide detailed explanations of what makes
an image weird; (2) image captioning, where models sum-
marize the content of the images; (3) cross-modal matching,
where models should score a detailed caption higher than a
correct but underspecified one, and (4) visual question an-
swering, where models answer questions that test their com-
prehension of the weird images (Fig. 2). Our evaluation
covers both zero-shot and supervised experimental settings.

Experiments on WHOOPS! show that state-of-the-art
vision-and-language models (e.g., OFA [37], BLIP [25],
CoCa [38]) lag behind human performance for all tasks.
For instance, a human evaluation reveals that a fine-tuned
version of BLIP2-XXL [24] achieves a performance of
27% acceptability, and a “pipeline” approach of feeding a
predicted image description to the latest version of GPT3
(davinci-003) [9] reaches 33%. However, both these mod-
els fail to generate explanations as well as humans, who
achieve 95% on the same task. We also show that the dif-
ficulty WHOOPS! goes beyond recognition; even providing
a ground-truth oracle image description instead of the pre-
dicted caption in the ”pipelined” setting, models still strug-
gle to effectively explain the incongruity of the scene, with
an accuracy rate of only 68%. Overall, our results show that

WHOOPS! is a challenging benchmark, even for state-of-
the-art vision-and-language models. This result highlights
the need for continued development in commonsense rea-
soning, compositionality, and explanation generation. We
release our models, code, and data.

2. Related Work
The field of commonsense reasoning has recently gained

significant attention, with various tasks proposed both in
natural language processing (NLP) [30, 40, 41, 31, 4, 15]
and computer vision [36, 8]. In the field of vision-and-
language, models are being developed to solve complex
visual reasoning tasks. These include visual understand-
ing tasks, such as VCR [39], as well as tasks that evaluate
commonsense reasoning in association and analogy tasks,
like WinoGAViL [5] and VASR [8]. Other tasks evaluate
compositionality (e.g., Winoground; [34]), visual abductive
reasoning (e.g., Sherlock; [18]) and comprehension and ex-
planation of multi-modal humor [19]. Recent progress in
large language models is making way for models that can
solve these tasks using instructions like BLIP2 [24] and in-
context learning, or zero-shot learning, like Flamingo [2]
and MLLM [21]. These recent advances pave the way for
our work, which provides a challenging resource for com-
monsense and compositionality.

WHOOPS!, is distinct from prior work that focuses on
reasoning with pre-existing images. Instead, it contains syn-
thetic images that are specifically designed to challenge AI
models’ abilities to reason about commonsense and com-
positionality, with an emphasis on images that violate ex-
pectations. Our approach uses image generation models to
create unique and complex images that would be difficult or
impossible to obtain otherwise, providing an opportunity to
evaluate critical aspects of visual reasoning, including com-
positionality and commonsense reasoning.

3. Collecting Weird Images
WHOOPS! is designed to challenge vision-and-language

models with images that require commonsense reasoning
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Figure 3: A histogram of the annotated commonsense reasons for WHOOPS! images to be weird. The reasons include a
wide range of deviations from expected social norms and everyday knowledge. We also present the explanation generation
performance of the two top models in our experiments (Section 5). Left axis is the frequency for each commonsense category,
and right is the performance of both models.

and understanding beyond simple object co-occurrence.
The term “weird” is ultimately subjective, ambiguous, and
culture-dependent. Because our goal is to create a bench-
mark, we aim to generate images that are unusual for a
diverse set of reasons, including temporal, biological, cul-
tural, physical and others. We start by describing how we
generate the images, and then present an analysis of the dif-
ferent reasons for the images, which shows that our dataset
is indeed diverse in this respect.

3.1. Human Generated Synthetic Images via Text-
to-Image Models

We recruit a group of 30 image designers who using
Midjourney, DALL-E [28], or Stable-Diffusion [29] as text-
to-image models. They are requested to generate weird im-
ages by first coming up with “weird” prompts, and editing
them until a desired image is generated.

These prompts should adhere to the following guideline:
first generate a prompt of an image that depicts two ele-
ments that are likely to co-occur, and then replace one of
them with a different element to create a new prompt that
describes an image that is unlikely to exist in reality. For
instance, taking a prompt of Albert Einstein holding a note-
book and replacing the notebook with a smartphone, result-
ing in a prompt for an unlikely image, as smartphones did
not exist during Einstein’s time. Each image is required to
be synthetic, rather than edited from existing images. This
results in a total of 500 weird images. See Appendix A.3
for full guidelines and examples.

Each of the images must also have a single reason for
making it “weird”, which the designers provide in a concise
one-sentence explanation, and the authors edit for factual

accuracy and specificity, including names, dates, and other
relevant information where needed. Before inclusion in the
dataset, each image is presented to a small control group
of solvers to ensure they understand what makes it weird.4

Some of the designers volunteer, while others are compen-
sated with 6 USD for each suitable image. To mitigate the
concern that weirdness is limited to a specific culture or re-
gion, the designers who created the images and the anno-
tators who labeled the data (Section 4) are from different
countries and continents.

3.2. Commonsense Categorization of Weird Images

Fig. 3 provides a histogram of the different types of com-
monsense reasoning that underlie the weirdness of images
in WHOOPS!. To create it, we manually annotate each
image with the main reason that contributes to its overall
sense of “weirdness”. Our annotation includes 26 differ-
ent categories. The reasons cover a broad range of do-
mains, including but not limited to temporal discrepancy
(Fig. 1 left), physical rules (Fig. 1 right), nutrition mis-
match (Fig. 2), unsuitable environment (Fig. 4), atypical ac-
tivity (Fig. 5), symbolic inversion, folklore knowledge and
more. This analysis shows the diversity and complexity of
the reasoning skills that vision-and-language models must
possess in order to perform well on our benchmark. Fur-
ther elaboration on commonsense categories is available in
Appendix A.4, including examples.

4Images that fail to pass this test are returned to the designers for re-
finement or to explore alternative concepts.



4. Using Weird Images to Create V&L Tasks

We pose four vision-and-language tasks over the
WHOOPS! images to form a benchmark. We first consider
a novel task—explanation-of-violation generation—which
evaluates a model’s ability to identify the commonsense rule
that an image violates and reason about the relationships be-
tween different elements in the image. We then consider
three other well-established tasks posed over the corpus:
image captioning, cross-modal matching, and VQA. Fig. 2
shows example annotations for the four tasks over a single
image. Previous works have shown that these tasks can be
prone to relying on language priors [22, 43, 17, 1, 7, 6, 13].
However, the images in WHOOPS! were purposefully de-
signed to include uncommon combinations, which may
make it more challenging for models to exploit language
priors. We also report the (relatively low) performance of a
text-only baseline in Section 5.1. The end result is a chal-
lenging test set for evaluating the performance of vision-
and-language models on complex reasoning tasks.

To create task instances, we crowdsource annotations for
each of the 500 images in our dataset, including captions,
various explanations. We pay each annotator 12–15$ per
hour for providing a caption and a explanation; annotation
details/instructions are available in Appendix A.5. We also
use auto-generation techniques to create VQA data based
on these captions [11, 20], and then validate it using human
verification. We provide a detailed description of each task
and its evaluation below.

4.1. Explanation-of-violation Generation

The task of the explanation generation is to provide a
single-sentence detailed explanation of what makes an im-
age weird. The goal is to test a model’s ability to identify the
commonsense rule that the image violates and reason about
the relationships between different elements in an image.
For instance, in Fig. 2, the explanation should provide in-
formation such as, “Pandas usually reside in Chinese bam-
boo forests, eat almost exclusively bamboo, and do not hunt
salmon fish like grizzly bears do”. We break the task down
into two components: identifying whether an image is weird
and explaining what makes it weird.

Identifying weird images. We select a subset of 100
weird images and use a similar protocol to the one described
in Section 3 to collect the corresponding “normal” images
for them (e.g., for the image of Einstein holding a smart-
phone, generate an image of him holding a notebook). This
task is evaluated using binary accuracy over this paired set,
where random chance is 50%. To assess human perfor-
mance on this task, we ask three human annotators to clas-
sify each image as either “weird” or “normal”. We deter-
mine the final classification through a majority vote. Human

performance is 92%, and 3/3 agreement is achieved in 70%
of the cases. These results suggest that, while “weirdness”
is subjective, on average, humans readily agree on what is
weird and what is not in the context of WHOOPS!.

Explanation-of-violation. We ask annotators to provide
a detailed single-sentence explanation of what makes the
image strange and include the reason why two elements are
unlikely to co-exist in the scene. We collect five explanation
per image, a total of 2,500. The metric to evaluate model
predictions on this task is human judgment. We compare
model generations to references using three crowdworker
judgments: full details and examples in Appendix A.5.

4.2. Established Tasks

Image captioning This task requires generating a single-
sentence description of an image that includes both ele-
ments whose combination makes the image weird. Unlike
the explanation task, the captioning task does not demand
any reasoning about incongruities. i.e., for the example in
Fig. 2, it suffices to just generate A panda bear fishing for a
salmon in the river. This identification task, however, could
be helpful for the explanation task presented in Section 5.
We crowdsource five textual descriptions per image, for a
total of 2,500 captions; evaluation is using the standard au-
tomatic captioning metrics CIDEr [35] and BLEU-4 [26]
compared to crowd-authored references.

Cross-modal matching In this task, a model is given an
image and a set of captions, all of which accurately describe
the scene, but some of which leave out important details.
The evaluation setup challenges models to rank the detailed
captions more highly than the underspecified ones. This
task tests the model’s ability to match the correct caption to
the image and overcome its language priors, e.g., a text-only
model may rate “A panda hunting for salmon” less likely
than “A bear hunting for fish”.5 Performance is measured
as the proportion of correct rankings. We collect 500 un-
derspecified captions per image, a total of 2,500 additional
captions.

Visual question answering (VQA) To create question-
answer pairs for WHOOPS!, we follow the Q2 pipeline for
automatic VQA generation [11, 20]. This process: 1) gen-
erates candidate answers from a given caption; 2) uses a
question generation model to generate a question for each
answer; 3) filter the generated questions with the Q2 NLI
model. Fig. 4 presents generated questions and answers for
each of the answer candidates in the image caption. We

5We confirm this point with a FlanT5 XL language model [12] by ask-
ing it to determine which caption is more likely, and it rates the underspec-
ified one as more likely in 85% of cases.



Figure 4: We obtain five caption from human annotations,
for example: “Two walruses are swimming in the jungle”.
We then automatically generate question-answering pairs:
(1) Where are the two walruses swimming? in the jungle
(2) How many walruses are swimming in the jungle? two
(3) What is swimming in the jungle? two walruses

then [20] to ensure that the questions are answerable. We
filter out instances solvable by a text-only model performs
well so that models must focus on visual-textual interac-
tions. Specifically, we use a language model, FlanT5 XL
[12], to answer the questions and filter out instances where
the BEM metric is above 0.1. This filtering removes ap-
proximately 30% of the questions and results in 3,374 VQA
samples. In 5.1, we show a text-only finetuned model per-
forms poorly on the resulting set. We evaluate using two
metrics: (1) strict exact match; and (2) BERT Matching
(BEM) [10], which approximates a reference answer to a
candidate answer given a question [14] using a language
model score.

We manually verify a sample 300 (image, question, an-
swer) triplets from the dataset by asking three crowdwork-
ers to classify whether the answer is correct. For a baseline
for human verification, we mix in randomly sampled 25%
of the “negative” answers. The majority vote is selected as
the final answer. Humans reach full agreement in 94% of
the cases, and the majority vote agrees with the automatic
VQA label in 97% of the cases, which provides strong evi-
dence that the generation process generates high-quality QA
instances.

4.3. Toxic Content Filtering

Finally, we take two steps to filter toxic and harmful im-
ages. First, four of the paper authors manually verify all
images and remove those that could be potentially offen-
sive for some groups. Second, we use the Perspectives API6

to detect and filter out toxic language from our annotated
data. We find that the vast majority of our data is non-toxic.

6https://www.perspectiveapi.com/

Pipeline

Ground-Truth Caption (Oracle)

“a wolf howling , bright sunny 

day background”

Caption

Human 

Curated 

“a wolf howling in the middle of 

a bright, sunny day, which is 

unusual because wolves are 

typically most active during the 

night.”

Explanation

GPT3

Predicted Caption

“wolf howling on top of 

the rock at sunset”
Caption

BLIP2

“a wolf howling on top 

of a rock at sunset, 

which is not a typical 

behavior of a wild wolf”

Explanation

GPT3

End-To-End

“the wolf is howling at the sun.”
Zero-shot

BLIP2

“wolfs usually howls during the night, 

not the day.”

Fine-tuned 

BLIP2

Figure 5: We explore two approaches for explanation-of-
violation generation. The first approach involved using an
end-to-end model that receives an image as input and gen-
erates an explanation as output, evaluating both a zero-shot
and fine-tuned versions of the BLIP2 model. The second
approach was a pipeline that predicted a caption for the im-
age, or used a ground-truth caption (oracle), and then used
a language reasoning model (GPT3) to generate an expla-
nation based on the caption.

Only a very small percentage (0.4%, 0.1%, and 0.4% for
captions, explanations, and underspecified captions, respec-
tively) contains toxic language, which we have removed and
replaced with new data.

5. Experiments

We evaluate models on our tasks in both a fully zero-
shot setting and also a 5-fold cross-validation supervised
configuration.

For zero-shot evaluations, we use the officially
published implementations of CLIP ViT L/14 [27],
OFA Large [37], BLIP Large [25], CoCa ViT-L-14
MSCOCO [38], and BLIP2 FlanT5-XXL [24]. Additional
details can be found in Appendix A.1. Some models can
be used to tackle all tasks (BLIP2), and some only a subset
of the tasks: OFA for image captioning and VQA; CoCa
for image captioning and cross-modal matching; and CLIP
only for cross-modal matching. For CLIP and CoCa, we
evaluate all available model versions (four for each model),
and for readability report the best performing ones.

For supervised evaluations, we fine-tune the BLIP2. To
report over the same instances as in the zero-shot evalu-
ations, we split the images in WHOOPS! into 5 cross-
validation splits. For these 5 splits independently, we train
supervised models using 60% of the data as training, 20%

https://www.perspectiveapi.com/


Task Identify Explain

Binary Accuracy (↑) Human Rating (↑)

End-to-end
BLIP2 FlanT5-XXL (Zero-shot) 50 0
BLIP2 FlanT5-XL (Fine-tuned) 60 15
BLIP2 FlanT5-XXL (Fine-tuned) 73 27

Pipeline
(Zero-shot)

Predicted Caption → GPT3 59 33
Ground-truth Caption → GPT3 (Oracle) 74 68

Humans 92 95

Table 1: Test results for Explanation-of-violation, which consists of the two subtasks of identifying weird images and ex-
plaining what makes them weird. Human performance far exceeds model performance on both tasks, even when an oracle
image description is provided.

Image Captioning VQA Matching

B-4 (↑) CIDEr (↑) ExactM (↑) BEM (↑) Specificity (↑)

Zero-shot

CLIP ViT-L/14 – – – – 70
OFA Large 0 0 8 38
CoCa ViT-L-14 MSCOCO 25 102 – – 72
BLIP Large 13 65 6 39 77
BLIP2 FlanT5-XXL 31 120 15 55 71

Fine-tuned BLIP2 FlanT5-XL 41 174 20 55 81
BLIP2 FlanT5-XXL 42 177 21 57 84

Text only FT BLIP2 FlanT5-XXL 1 2 4 24 94

Table 2: Test results for image captioning, cross-modal matching and visual question answering. A fine-tuned version of
BLIP2 FlanT5-XXL generally performs best but there’s significant headroom.

as validation, and 20% for test. We fine-tune just the Q-
former parameters of BLIP2 using Adam [23]. We train for
15 epochs, and use the validation set for early stopping and
to select learning rate between {1e-5, 5e-5}. We concate-
nate training instances in a sequence-to-sequence format for
all tasks jointly such that a single supervised model can ad-
dress all tasks; see Appendix A.2 for details.

We also consider “pipelined,” methods [42] for the
explanation-of-violation tasks. These methods decouple
recognition of objects from reasoning about incongruity. In
the “pipelined” approach, an image caption is passed to a
large language model (LLM), which is then tasked with the
two explanation-of-violation subtasks. We use GPT3 text-
davinci-003 as the LLM [9] and experiment with two textual
descriptions: a predicted image caption by the BLIP2 model
and an oracle version, which includes the ground-truth cap-
tion collected by annotators and verified by the authors.

As a baseline, we train a text-only version
of BLIP2 FlanT5-XXL using the same cross-

validation/hyperparameter setup as for the full supervised
models, except we set all pixels of the image to mean so
that image content cannot be used at training or testing
time.

5.1. Results

Explanation-of-violation. The results for the two identi-
fication and explanation subtasks, are presented in Table 1.
For both cases, models significantly lag behind human per-
formance. For example, on identification, the best end-to-
end fine-tuned BLIP2 FlanT5-XXL model achieves at best
73%. For explanation, even the oracle model (which is
given access to a ground-truth, human-authored description
of the image) only achieves a performance of 68%, falling
substantially short of human performance (95%). These re-
sults indicate that our dataset provides a challenging bench-
mark for the development of next-generation vision-and-
language models. We provide an example of model predic-
tions in Fig. 5 and an example of the evaluation task to rate
both model predictions and human explanations in Fig. 7.



Weird Normal Natural % Proportion

V V V 45
X V V 40
X X X 6
X V X 3
V X V 2
V V X 2
X X V 2
V X X 0

Table 3: Analysis of caption errors, human rate of correct
caption: 40% of the errors are “commonsense errors” where
the incorrect caption is for the “weird” image only. Only 3%
are “naturalness errors” where the natural image caption is
better than the synthetic image captions. 5% of the cases
had synthetic image captions better than natural ones.

Captioning, VQA, + Matching The results are presented
in Table 2. The zero-shot results highlight the strengths and
weaknesses of each model. OFA achieves the lowest re-
sults, particularly in image captioning, where it frequently
predicts the pattern “digital art selected for the #”. Zero-
shot BLIP2 demonstrates a substantial improvement over
the other models. But even the supervised models have sig-
nificant room for improvement, especially in VQA (max-
imum BEM score is 57%) and image captioning; In sec-
tion 6, we conducted an analysis in which humans rate the
BLIP2 zero-shot predictions. Despite the relatively high
CIDEr score, the model failed to capture important infor-
mation, resulting in a human rating of 49%. We also report
results for a text-only supervised baseline. The results show
that it performs poorly on captioning and VQA. 7

6. Analysis
In this section, we analyze if the challenges in WHOOPS!

come from the syntheticity or weirdness of images and eval-
uate the performance on different commonsense categories.

6.1. Main Challenge: Weirdness, not Synthesis

To discern whether the difficulties models face in
WHOOPS! arise from the images being “weird” or syn-
thetic, we collect a set of “normal” and “natural” images.
The “normal” images are created by replacing the uncon-
ventional element with a conventional element, resulting in
minimal changes between the pairs of (normal, weird) im-

7Our question collection process filters out questions that could be an-
swered using text alone in a zero-shot setting (see Section 4.2). The current
analysis validates that this filter indeed removed shortcuts, even for super-
vised models. In contrast, the text-only model performs well in the match-
ing task with a performance of 94%: likely, the model learns to prefer
more detailed captions, even without seeing the image. We thus advocate
for matching to be used only as a zero-shot evaluation.

(a) a pair of white ice
skates on an ice rink

(b) a close up of a per-
son’s skates on an ice
rink

(c) a person is skating
on an ice rink

(1) Wrong caption only for the weird image (caption c).
The flooring is made of wooden parquet, and not an ice rink.

(d) an old abandoned
house in the middle of
a field with a lightning
bolt

(e) a house in the mid-
dle of a field

(f) an old house in the
desert with a lightning
bolt

(2) Wrong captions for both synthetic images, weird and
normal (captions e and f ). The middle one misses the light-
ning, the right one misses the clear sky.

(g) a man in a top
hat playing an electric
guitar

(h) slash plays a cus-
tom electric guitar in
smoke

(i) slash playing a sax-
ophone in a band

(3) Wrong caption only for the natural image (caption g).
The left caption misses the famous guitarist name (Slash)

Figure 6: Examples of caption errors by the BLIP2 model.
The images from left to right are the weird (synthetic) im-
ages, normal (synthetic, without weirdness) and natural.

ages, following the idea of contrast sets [16, 7]. To obtain
the “natural” images, we search for similar non-synthetic
images using Clip Retrieval [3], which finds close images
through CLIP [27] embedding similarity. High quality im-
ages with an “aesthetic score” above 7 are chosen, and the
top similar images are selected. Fig. 6 shows examples of
the collected images, including an image of ice skates in a
“natural” photograph, and two synthetic images, one on a
conventional element (an ice rink) and the other on an un-



Figure 7: Amazon Mechanical Turk user interface for the task of explanation selection. The annotators receive an image and
number of explanations, both human curated and models predictions, and need to mark the correct explanations.

conventional surface (a basketball parquet).
Next, we use BLIP2 to generate captions for 300 images

in three categories: natural, normal, and weird. Human an-
notators evaluate the accuracy of the captions for each im-
age category, and the results are presented in Table 3. The
accuracy of image captioning is high for the natural and nor-
mal categories (89%), but low for the weird category (49%).
We find BLIP2 generates correct captions for all three cate-
gories for 45% of the image triplets. For 40% of the triplets,
incorrect captions are generated only for the weird images
(Fig. 6 (a)). In 5% of the cases, synthetic images have better
captions than natural ones, while only 3% of cases have er-
rors related to naturalness, with incorrect captions for both
synthetic images (Fig. 6 (b)). These results suggest that the
BLIP2 model can generate captions for synthetic images as
well as natural images with high accuracy, but the primary
challenge lies in commonsense reasoning, highlighting the
need to improve this capacity within state-of-the-art mod-
els. The full experiment results are available in the project
website.

6.2. Performance by Commonsense Categories

In Fig. 3, we included the performance of the top two
models, demonstrating that WHOOPS! provides insights
into their strengths and weaknesses. Specifically, we ob-
serve that the Predicted Caption → GPT3 pipeline approach
outperforms the Supervised BLIP2-XXL end-to-end model
in 46% of the categories, such as in cases of Incorrect us-
age (e.g., A bowl of ice cream is inside the microwave), and
performs worse in 23% of the categories, such as in Biologi-
cal rules (e.g., A mouse hatches from an egg), and similarly
in 31% of the categories. Notably, both models perform
poorly in identifying temporal discrepancy (e.g., women in
ornate Renaissance clothing take a selfie with a smartphone)
and art knowledge (e.g., The Girl with a Pearl Earring wears
a golden hoop earring), while performing well in identify-
ing an Unsuitable Environment (e.g., A snowman sits on the
beach on a sunny day).

7. Conclusions
We introduced WHOOPS!, a novel dataset of synthetic

images challenging AI models to reason about common-
sense and compositionality. Using text-to-image models,
we generated difficult or impossible to obtain images and
annotated them with explanations, captions, underspecified
captions, and visual question answering pairs. We proposed
a benchmark of four challenging tasks and evaluated state-
of-the-art models, which struggled, especially in the new
task of explanation generation, where a significant gap be-
tween human and model performance remains. Our dataset
and benchmark tasks are a valuable resource for advancing
research in these areas.

8. Limitations
We took measures to filter out potentially harmful or of-

fensive images and texts in WHOOPS! (Section 4.3), but it
is still possible that some individuals may find certain con-
tent objectionable. Any harmful cases can be reported in
the project website and removed from the dataset.

While WHOOPS! has fewer images than other bench-
marks, we intentionally created unique and challenging
images to provide diverse commonsense challenges. The
smaller size allowed for efficient manual annotation and
evaluation, ensuring data quality and reliability. We plan
to expand the dataset in the future to enhance its usefulness.

We have made significant efforts to develop reliable and
advanced models for this task, our focus is not on achiev-
ing the ultimate upper bound on model performance, but
on providing a challenging resource for commonsense and
compositionality using image generation models.
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A. Appendix
Magic icon in the title created by Freepik - Flati-

con https://www.flaticon.com/free-icons/
magic.

The following sections are relevant for reproducibility
and providing more details and examples about the models
evaluation, training and data collection.

A.1. Model versions

We take the official implementations for CLIP:
https://github.com/openai/CLIP, OFA:
https://github.com/OFA-Sys/OFA, CoCa:
colab.research.google.com/github/
mlfoundations/open_clip/blob/master/
docs/Interacting_with_open_coca.ipynb,
BLIP: https://colab.research.google.
com/github/salesforce/BLIP/blob/main/
demo.ipynb, BLIP2: https://github.com/
salesforce/LAVIS/tree/main/projects/
blip2. We take the versions specified in the paper without
changing the default hyper-parameters.

A.2. Supervised Data Details

We format all supervised tasks in a sequence-to-
sequence fashion. All training examples have the format
〈ximage, xtext, ytext〉. Where BLIP-2 Flan-T5 is trained
to maximize the probability of the textual target given
the image and prompt inputs, i.e., P (ytext|ximage, xtext).
For each cross-validation split, we train a single multitask
model for all tasks by setting the prompt in a strategic fash-
ion. Example input/output targets are given in Table 4. We
provide the training splits for completeness, although we
recommend using WHOOPS! primarily as a test set.

The models were trained using 8xA6000 GPUs. A sin-
gle training run for 15 epochs takes around 2 hours. To
train all 5 splits, over two learning rates and three models,
it requires approximately 72 hours of compute time on a
machine with 8xA6000 GPUs, which is equivalent to about
576 GPU hours.

A.3. Image Generation Designers Guidelines

The task is to create an image that depicts something
“weird” that will be intuitive for humans to understand and
challenging to artificial intelligence models. The images
should be relatively realistic, with one weird thing that re-
quires the use of logic and general knowledge. The goal
is to compare the explanations provided by the models and
people to determine whether the models struggle more than
humans.

To ensure the task is challenging for AI models, the crite-
ria for “weird” should be conceptual and not directly related
to the rest of the picture. For example, there should be no

other illogical things in the picture, such as distorted objects
or more than ten fingers.

To create prompts, participants should replace X1 with
some X2 in situations where X and Y appear together in a
normal way in the real world. The similarity between X1

and X2 should mislead the models when they ask “What’s
weird in the picture?” The prompts should include cul-
tural, general knowledge, times, and behavioral elements
that make the picture illogical, but not directly related to
what is happening in the picture.

Participants will receive a link to their own shared direc-
tory where they can upload their high-quality images and
prompts that follow the naming conventions provided by
Midjourney.8 The prompts that create the images should
be recorded, and formats with seed should be used to allow
the images to be restored later.

Figure 8: Designer Guidelines Examples.

Example of prompts for the images in Fig. 8:

1. Ronaldo (X2) with the World Cup trophy (Y ) instead
of Messi (X1) with the World Cup trophy (Y )

2. Greta Thunberg (Y ) holds a disposable cup (X2) in-
stead of a reusable cup (X1)

3. A surgeon (Y ) in the kitchen with fruit (X2) instead of
an operating room (X1)

4. Spaghetti plate (Y ) with spoon (X2) instead of fork
(X1)

5. Image of a girl (Y ) with a shadow of a man (X2) in-
stead of a girl (Y ) with her own shadow (X1)

8www.midjourney.com
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Task Input (xtext) Target (ytext)

VQA Question: Through what is the man drink-
ing tea looking at the Earth?

a porthole

Captioning Describe the image. A snow plow is plowing sand in the desert.

Matching Which is better? A: Boys are being rained
on. B: A group of children are wearing
raincoats in a classroom.

B

Weird Id Is this normal or weird? weird

Weird Explain (crowd) Why is it weird? Walking in the road is dangerous, espe-
cially for a child who should be on a side-
walk instead.

Weird Explain (designer) Why is it weird, in detail? For an indoor fire to be safe, it has to be
adequately ventilated and contained within
a fireproof environment like a fireplace or a
modern stove, which is why you don’t see
a campfire indoors because the fire would
quickly spread and destroy everything and
the carbon monoxide would suffocate any
living creatures.

Table 4: Illustrations of sequence-to-sequence formatting of each task (images omitted, but are also included as inputs). Our
supervised models are trained on a concatenation of all training data for all tasks.

6. Green stop sign (X2) on the street (Y ) instead of a red
stop sign (X1)

7. Woodpecker (Y ) makes a hole in a metal electric pole
(X2) instead of a tree (X1)

8. Lemons (X2) in nest (Y ) instead of bird eggs (X1)

9. Cup of cold coffee (X2) with steam (Y ) instead of a
cup of hot coffee (X1) with steam

A.4. Commonsense Categories

WHOOPS! contains 26 different commonsense cate-
gories. Fig. 9 presents examples for 24 of them, the rest can
be found in the paper. In Fig. 1 the image of Albert Ein-
stein is categorized as Temporal discrepancy and the can-
dle as Physics rules. The concept of inability to execute
refers to a scenario where an object is unable to fulfill its in-
tended purpose due to a change or situation depicted in the
image. For instance, in the image shown in Fig. 9, the pres-
ence of trees in the forest blocks the wind from reaching the
wind turbine, resulting in its inability to generate electricity.
The Unnatural Environment category pertains to instances

where objects, particularly animals, are depicted in settings
that are not their natural habitats, such as a moose found
on a tropical beach. On the other hand, the Unsuitable En-
vironment category refers to situations where the object is
placed in a location that is not suitable for fulfilling its in-
tended function, as seen in the example of car racing in the
Colosseum.

A.5. Human Annotation

Fig. 10 shows an example of the Mechanical Turk user-
interface. Fig. 11 shows the instructions given to the anno-
tators.

The basic requirements for our annotation task is per-
centage of approved assignments above 98%, more than
5,000 approved HITs, the location from the US, UK, Aus-
tralia or New Zealand. We selected 5 examples from our
dataset as qualification test and screen the annotators re-
sults.

Fig. 12 shows an example from the VQA verification
part, where the annotators are asked to determine whether
a visual question answering instance generated by an auto-
matic process is correct.



Figure 9: The WHOOPS! images span across various categories and are intended to test AI models in multiple areas of
common sense.

Fig. 7 shows an example from the explanation selection
part, where the annotators are asked to select correct expla-

nations for the task. The options are both human selections
and model predictions, and by aggregate the raters selec-



Figure 10: Amazon Mechanical Turk Annotators user in-
terface. The annotators receive an image and provide three
types of annotations.

Figure 11: Amazon Mechanical Turk Annotators Instruc-
tions for Dataset Annotation.

Figure 12: Amazon Mechanical Turk interface for the task
of VQA verification. The annotators receive an (image,
question, answer) triplet, and need to determine whether the
answer is correct or not.

tions, we can extract human metric performance for both the
human annotators who solved the task, and both for the dif-
ferent models. The explanation selection process is critical
for obtaining accurate evaluations of model performance.
The annotators are presented with a set of options that in-
clude both human and model-generated explanations. The
selected explanations are then aggregated to derive a human
metric for both the annotators and the models. A good ex-
planation should identify why X and Y are unusual together
due to some reason Z. For example, “Thorns are sharp and
will cut the brides arms” correctly identifies the reason why
thorns and a bride are unusual together. However, if the ex-
planation fails to identify reason Z, it is not acceptable, such
as “An old man cannot skateboard.” General statements or
Wikipedia snippets that fail to explain what makes the im-
age strange are also inadequate, e.g., “Brides usually hold
a bouquet of flowers”. Moreover, explanations that contain
incorrect information are not considered correct. Finally, if
an explanation requires verification with a search engine, it
should be excluded from the selection process. Overall, the
explanation selection process ensures that the chosen expla-
nations accurately capture the reason for an image’s weird-
ness and contribute to the accurate evaluation of model per-
formance.


