The Hebrew
University
Of Jerusalem

Ben-Gurion

Data Efficient Masked Language Modeling for Vision and Language

et Yonatan Bitton, Gabriel Stanovsky, Michael Elhadad, Roy Schwartz

Overview Experiments

Masked language modeling (MLM) is a key pre-training objective in text transformers.

[MASK] have muscled hind legs that allow for
maximum force, maneuverability, and acceleration

Downstream tasks
Our alternative masking strategies consistently outperform the baseline MLM

strategy, especially in low resource settings
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The difference in the cross-modal setting, is that the model takes into account both the
textual context and the image “°.

A [MASK] is eating the carrot _ _
Prompt hased object detection

Our alternative models are more responsive to the image contents

A photo of a MASK. A MASK in the photo.
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We find the current MLM objective sub-optimal for vision and language, as it does not

make efficient use of training data 2.
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Input sequence length is short (20 tokens) Input sequence length is long (512 tokens)

Analysis

g 'nmany cases, no token Is masked Hierarchy of Masked Semantic Classes

4 ~50% of tokens in pre-train data are stop-words or punctuation marks

Focusing on stop-words is leading to under-utilization of the image =)

Sentence A person performs a stunt jump on a [MASK].
Masked token motorcycle

Top 5 predictions motorcycle, bike, ramp, bicycle, cycle

Top 5 predictions w/o image building, wall, beach, field, street

Loss .25

Loss w/o image 3.96

A image loss 371

Masking strategy With Image Without Image Image Necessity

Metric image loss (exp) Accuracy @ 5 image loss (exp) Accuracy @ 5 A image loss (exp) Accuracy @ 5

Baseline MLM 3.2 89% 8.9 78% 5.7 10%
Stop-words & punctuation, 15% 15 98% 29 96% 1.4 2%
Content words, 15% 9.4 76% 38.7 56% 29.3 20%

We suggest alternative masking strategies, specific to the cross-modal settings,
addressing these shortcomings A
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Our method masks words that require the image in order to be predicted.
Our pre-train masking strategy consistently improves over the baseline strategy in two Baseline MLLM 7% 27% 70% 36%

evaluation setups. | Stop-words & punctuation, 15% 98% 4% 80% 13%
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