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Abstract

Large multimodal datasets have been instrumental in recent breakthroughs such as CLIP,
Stable Diffusion, and GPT-4. At the same time, datasets rarely receive the same research
attention as model architectures or training algorithms. To address this shortcoming in the
machine learning ecosystem, we introduce DataComp, a participatory benchmark where the
training code is fixed and researchers innovate by proposing new training sets. Concretely,
we provide a testbed for dataset experiments centered around a new candidate pool of 12.8B
image-text pairs from Common Crawl. Participants in our benchmark design new filtering
techniques or curate new data sources and then evaluate their new dataset by running our
standardized CLIP training code and testing the resulting model on 38 downstream test sets.
Our benchmark consists of multiple scales, with four candidate pool sizes and associated compute
budgets ranging from 12.8M to 12.8B samples seen during training. This multi-scale design
facilitates the study of scaling trends and makes the benchmark accessible to researchers with
varying resources.

Our baseline experiments show that the DataComp workflow is a promising direction for
improving multimodal datasets. We introduce DataComp-1B, a dataset created using a simple
filtering algorithm applied to the 12.8B candidate pool. The resulting 1.4B subset enables
training a CLIP ViT-L/14 from scratch to 79.2% zero-shot accuracy on ImageNet. Our new
ViT-L/14 model outperforms a larger ViT-g/14 trained on LAION-2B by 0.7 percentage points
while requiring 9× less compute during training. We also outperform OpenAI’s CLIP ViT-L/14
by 3.7 percentage points, which is trained with the same compute budget as our model. These
gains highlight the potential for improving model performance by carefully curating training
sets. We view DataComp-1B as only the first step and hope that DataComp paves the way
toward the next generation of multimodal datasets.

We publicly release our datasets, associated tooling, filtering baselines, and our code for
training and evaluating models at www.datacomp.ai.
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Table 1: Zero-shot performance of CLIP models trained on various datasets. Our dataset DataComp-
1B, assembled with a simple filtering procedure on image-text pairs from Common Crawl, leads to a
model with higher accuracy than previous results while using the same or less compute. Training
compute is measured in the total number of multiply-accumulate operations during training (MACs).
See Section 3.5 for details on the evaluation datasets.

# samples Train compute ImageNet Avg. performance
Dataset Dataset size

seen
Architecture

(MACs) accuracy (38 datasets)
OpenAI’s WIT [102] 0.4B 13B ViT-L/14 1.1× 1021 75.5 0.61
LAION-400M [119, 23] 0.4B 13B ViT-L/14 1.1× 1021 73.1 0.58
LAION-2B [120, 23] 2.3B 13B ViT-L/14 1.1× 1021 73.1 0.59
LAION-2B [120, 23] 2.3B 34B ViT-L/14 2.6× 1021 75.2 0.61
LAION-2B [120, 23] 2.3B 34B ViT-H/14 6.5× 1021 78.0 0.64
LAION-2B [120, 23] 2.3B 34B ViT-g/14 9.9× 1021 78.5 0.64
DataComp-1B (ours) 1.4B 13B ViT-L/14 1.1× 1021 79.2 0.66

1 Introduction

The past two years have seen multiple breakthroughs in multimodal learning. A new family of models
including CLIP [102], DALL-E [106, 107], Stable Diffusion [114], Flamingo [4], and GPT-4 [95] offer
unprecedented generalization capabilities in zero-shot classification, text-guided image generation,
and in-context learning. While these advances use different algorithmic techniques such as contrastive
learning, diffusion, or auto-regressive modeling, they all rest on a common foundation: large datasets
containing paired image-text examples. For instance, CLIP’s training set contains 400 million
image-text pairs, and Stable Diffusion was trained on subsets of LAION-2B [120], a dataset of more
than two billion image-text pairs. This new generation of image-text datasets is more than 1,000
times larger than previous training datasets such as the widely used ImageNet, which contains 1.2M
images [32, 117].

Despite the central role large image-text datasets play in multimodal learning, little is known about
them. Many state-of-the-art datasets are proprietary and only available in corporate research labs,
as in the case of CLIP [102], DALL-E [106, 107], Flamingo [4], and GPT-4 [95]. But even for public
datasets such as LAION-2B [120], it is unclear how design choices during dataset construction, such
as the data source or filtering techniques, affect the resulting models. While there are thousands
of ablation studies for algorithmic design choices (loss function, optimizer, model architecture,
etc.), datasets are usually treated as monolithic artifacts without detailed investigation or further
improvements. Moreover, datasets currently lack the benchmark-driven development process that
has enabled the community to produce a steady stream of advances on the model side. These issues
impede further progress in multimodal learning, as evidenced by recent work showing that public
datasets currently do not match the scaling behavior of proprietary alternatives [23]. A key difficulty
for improving datasets is the scarcity of data-centric benchmarks that isolate dataset enhancements
from changes to the model.

In this paper, we take a step towards a more rigorous dataset development process via five
contributions. Our first and central contribution isDataComp, a new benchmark for multimodal
dataset design. DataComp flips the traditional benchmarking paradigm in machine learning
where the dataset is fixed and the research community proposes new training algorithms. Instead
of a fixed dataset, we hold the training code, model, and computational budget constant so that
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participants innovate by proposing new training sets. To evaluate the quality of a training set,
we score the resulting model with a broad testbed of 38 classification and retrieval tasks such as
ImageNet [32], ImageNetV2 [112], DTD [25], EuroSAT [56], PatchCamelyon [131], SUN-397 [135],
MSCOCO [21], and WinoGAViL [12].

DataComp focuses on two key challenges that arise when assembling large training datasets: what
data sources to train on, and how to filter a given data source. Each challenge corresponds to one
track in our benchmark. To facilitate the filtering track, our second contribution is CommonPool,
a dataset of 12.8B image-text pairs collected from Common Crawl. In the filtering track,
the goal of participants is to find the best subset of CommonPool to train on. CommonPool
is currently the largest publicly released image-text dataset, exceeding the size of LAION-5B by a
factor of 2.5×. Additionally, we apply explicit content checks and face blurring when constructing
CommonPool to improve the safety of image-text datasets. In the second track, Bring Your Own
Data (BYOD), participants can leverage any data source of their choice, as long as the training data
does not overlap with our evaluation testbed. Taken together, our two tracks provide a controlled
environment to better understand dataset curation for multimodal learning.

Our third contribution is an investigation of scaling trends for dataset design. In particular,
DataComp contains four distinct compute and data scales. On the data side, the candidate pool
for filtering ranges from 12.8M samples to 12.8B samples. On the compute side, the training budget
scales accordingly from 12.8M to 12.8B samples seen during training. This choice of pool size and
compute budget leads to the natural baseline of training on the entire candidate pool with a single
training pass and no filtering. Expressed in GPU hours, the cost of a single training run ranges from
4 to 40,000 GPU hours on the A100 cluster we used for development. This 10,000× range stems
from a factor 1,000× in pool size and another factor 10× from scaling the model size. The different
scales enable researchers with different resources to participate in our benchmark. Moreover, the
multi-scale format facilitates studying scaling trends. Our results show that the order of several
filtering approaches is largely consistent across multiple compute and data scales.

Our fourth contribution are over three hundred baseline experiments and resulting insights
into how dataset curation methods compare. Our baselines span basic techniques such as removing
small images or non-English captions, querying captions for relevant keywords, filtering based on
image embeddings, and applying a threshold on CLIP scores. A key result from our baselines
experiments is that smaller, more stringently filtered datasets can lead to models that generalize
better than larger datasets coming from the same pool. At the 12.8B scale, our best filtering baseline
increases ImageNet zero-shot accuracy by 6.9 percentage points (pp) relative to the unfiltered pool
(see Table 3). For the BYOD track, our initial experiments with multiple data sources find that
109M additional data points (less than 1% of the pool size) improve the CLIP-filtered subsets of
CommonPool by up to 1.2 pp ImageNet accuracy at the 12.8B scale (see Table 4).

Finally, our fifth contribution is DataComp-1B, a new state-of-the-art multimodal dataset
that can be used as a drop-in replacement for previous image-text datasets such as LAION-
2B. DataComp-1B is a filtered subset of CommonPool containing 1.4B image-text pairs and
demonstrates that improving data curation can yield large performance gains. We obtained
DataComp-1B by combining our two most promising baselines from smaller scale experiments:
CLIP score filtering and image-based filtering. DataComp-1B enables training a CLIP ViT-L/14
model with a compute budget of 12.8B samples to an ImageNet zero-shot accuracy of 79.2% (see
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Figure 1: Participant workflow. A) Participants first choose a scale, small, medium, large or xlarge,
based on their resource constraints (submission to multiple scales is allowed). B) Participants
create a candidate dataset, choosing one of two tracks: filtering, where only image-text pairs
from CommonPool are allowed; or BYOD, where any data source (including CommonPool) is
permitted. C) Participants train a CLIP model on their candidate pool using a fixed architecture
and hyperparameters (Section 3.4). D) Participants evaluate the trained model on a suite of diverse
downstream tasks (Section 3.5) and submit to our leaderboard.

Table 1). This model, trained on DataComp-1B, outperforms a larger CLIP ViT-g/14 model
trained on LAION-2B for about 3× longer (34B samples seen), corresponding to a an 9× overall
reduction in compute cost. Moreover, our model outperforms OpenAI’s original CLIP ViT-L/14
by 3.7 percentage points, which is trained with the same compute budget of 12.8B samples as our
model. We view DataComp-1B as only the first new dataset coming out of DataComp and expect
that future work will leverage our benchmark to discover further dataset improvements.

We hope that DataComp serves as a starting point for new creative research on dataset curation
by making it easier to conduct controlled experiments in a shared experimental setting. To enable
future work, we publicly release our candidate pools, our tooling for assembling these pools, our
filtering baselines, and our code for training and evaluating models at www.datacomp.ai. We present
an overview of the participant workflow in Figure 1. We believe that our infrastructure will help put
research on dataset curation on rigorous empirical foundations, draw attention to this understudied
research area, and lead to the next generation of multimodal datasets.

2 Related Work

Due to space constraints, we discuss work that is closest to DataComp here and refer the reader to
Appendix C for additional related work.

The effects of data curation. Classical work considers dataset cleaning and outlier removal
[65, 140, 115, 116] to discard samples that may lead to undesirable model bias. A related line of work
develops coreset selection algorithms [54, 3, 41, 7, 86, 134, 27], which aim to select data subsets that
lead to the same performance as training on the entire dataset. These techniques are known to scale
poorly to larger data regimes [46, 2], which are critical for modern deep learning algorithms. More
recent efforts in subset selection often operate on already curated datasets [90, 130, 121, 11, 28, 98]
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like CIFAR-10, ImageNet or on smaller data regimes (e.g., YFCC-15M [102, 129]). These settings
often do not reflect newer training paradigms that involve (1) noisy image-text pairs instead of
category labeled images and (2) large scale datasets (e.g., billions of samples). While data-centric
investigations have led to community competitions like dcbench [38] and DataPerf [89], existing
benchmarks have likewise operated at small data scales [92], especially when compared to datasets
like LAION-2B [120], which contains over two billion images. DataComp bridges this gap to better
align dataset curation algorithms with modern large scale image-text training.

There has also been renewed interest in dataset pruning and deduplication. Sorscher et al. [124]
show that data pruning can be used to outperform traditional power-law scaling trends on ImageNet,
but do not consider image-text training or larger datasets. Raffel et al. [104] attempt to remove
sentence redundancies when creating the C4 corpus. Future work further demonstrated the benefits
of deduplication for better language modeling [82]. Radenovic et al. [101] introduce CAT filtering for
image-text datasets—a rule based system to retain high quality samples. Abbas et al. [2] introduce
SemDeDup, which starts with the CAT-filtered LAION-440M subset, further employing a clustering
method to removes semantic duplicates. SemDeDup improves training speed; however, the resulting
models show similar zero-shot ImageNet performance when compared to models trained on the
original dataset. At our largest scale, we introduce a pool of 12.8B image-text pairs, which is an
order of magnitude larger than the data pools considered in either CAT or SemDeDup. Hence, we
hope the DataComp benchmark will bootstrap future data-centric exploration at a scale that is
unprecedented in non-proprietary research.

Large-scale multimodal datasets. Datasets have been instrumental to build multimodal models
like CLIP [102], Flamingo [4], Stable Diffusion [114], DALL-E [106, 107] and GPT-4 [95]. These
methods succeeded by training on large, heterogeneous datasets rather than solely through advanced
modelling techniques. For example, OpenAI’s CLIP trains on 400M image-text pairs from the web,
roughly 300× the size of ImageNet [32]. Prior work on scaling image-text datasets also provides
promising trends with respect to zero-shot model performance [64, 99]. Additional large scale
datasets like FILIP-300M [137], FLD-900M [141], and PaLI-10B [20] were constructed to train
multimodal models. However, many datasets used to train such models (including the dataset for
OpenAI’s CLIP) are proprietary, making it hard to conduct data-centric investigations. Even for
public image-text datasets like SBU [96], Flickr30k [139], MS-COCO [21], Conceptual Captions [122],
CC12M [19], RedCaps [33], WIT [125], Shutterstock [93], YFCC-100M [129], COYO-700M [15],
LAION-400M [119], or LAION-2B [120] little is known about what constitutes a good image-text
dataset. Preliminary analysis suggests that different image-text data sources lead to CLIP models
with different properties [93]. However, previous work is limited to smaller scale data (10-15M
examples). Our work provides a testbed for conducting controlled experiments on how different data
curation techniques affect models. Our benchmark spans several orders of magnitude in compute
and data scale. It includes the largest publicly available collection of image-text pairs, with 12.8B
samples.

3 DataComp

The goal of DataComp is to place dataset curation on rigorous empirical foundations, making it
easier to conduct controlled experiments in a shared experimental setting. In contrast to traditional
benchmarks where participants iterate on model design and hyperparameter tuning, DataComp
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asks participants to design datasets that lead to high accuracy under fixed experimental conditions
on the modeling side. Our benchmark focuses on large image-text datasets and evaluates a new
dataset by training a CLIP model on the dataset from scratch [102]. To facilitate such investigations,
we provide a candidate pool of uncurated image-text pairs crawled from the public internet.

Our benchmark offers two tracks: one where participants must use only samples from the pools we
provide, and another where participants can use external data in addition to samples from our pool.
Moreover, DataComp is structured to accommodate participants with diverse levels of computational
resources: each track is broken down into four scales with varying compute requirements.

In this section, we discuss several design considerations including the benchmark tracks, experimental
details for training, datasets used for evaluation, and the rules of the competition.

3.1 Competition design

The first question when designing a datasets benchmark is how to enable meaningful comparisons
between different datasets. In numerous areas of machine learning, larger datasets lead to better
performance [79, 70, 64, 99, 59, 23, 14, 102, 103]. Hence a natural starting point for a dataset
benchmark would be to compare datasets of the same size only. While intuitive, this approach is
flawed when it comes to contemporary large training sets for multimodal models. In particular,
controlling the dataset size ignores the creation process behind the dataset and thereby fails to
control for the actually relevant quantities: pool size and training compute. To illustrate this point,
we now briefly summarize how state-of-the-art multimodal datasets are assembled.

At a high level, assembling a dataset such as LAION-2B consists of two steps. The first step is to
identify one or multiple data sources, e.g., a web crawl such as Common Crawl or a widely used
website such as Reddit. The data source should provide many training examples covering a broad
distribution and come with supervision signals such as nearby text. After identifying a suitable set
of data sources, the next step is to filter the data source to remove data points with low-quality
annotations or other deficiencies (blurry images, etc.). The final dataset then contains all examples
from the data sources that pass the data curation filters.

An important aspect of this dataset creation process is that the final dataset size is a design choice
and not fixed ahead of time by the data sources. In particular, the dataset designer faces a trade-off
between the dataset size (more data points are better) and data quality (higher quality data points
are better). Hence the true data constraint in web-scale training set curation is not the size of
the final dataset, but the size of the candidate pool. To make DataComp a realistic benchmark
for dataset curation that can inform future dataset projects, we therefore fix the candidate pool
participants work with in the filtering track, but otherwise give participants full control over the
training set size.

Besides the size of the candidate pool, the other practically relevant constraint when training a
model is the compute cost. In order to put training sets of different size on equal footing, we specify
the training compute in terms of the total number of samples seen during training, not in terms
of how many passes (epochs) the training run makes over the training set. As a concrete example,
consider the 12.8B candidate pool, for which we fix a compute budget of 12.8B examples seen. A
participant may choose to build a training set A with 3.2B data points by removing 75% of the
candidate pool. The DataComp training code would then make four passes over this training set A.

6



Table 2: Experimental configuration for each scale. The number of samples seen during training
at the largest scale is chosen to match the experimental setup from Radford et al. [102]. Training
compute is measured in the total number of multiply-accumulate operations (MACs).

Scale Model Train compute (MACs) Pool size and # samples seen
small ViT-B/32 9.5× 1016 12.8M
medium ViT-B/32 9.5× 1017 128M
large ViT-B/16 2.6× 1019 1.28B
xlarge ViT-L/14 1.1× 1021 12.8B

Alternatively, a participant may filter more aggressively and end up with a dataset B containing only
1.6B examples (i.e., removing 87.5% of the candidate pool). In this case, the training code would
make eight passes over training set B so that the total amount of training compute remains constant
(12.8B samples seen). A key result from our baselines experiments in DataComp is that smaller,
more stringently filtered datasets can lead to models that generalize better than larger datasets
coming from the same pool of images when the total amount of training compute is constant.

This realistic, pool-centric perspective on dataset curation is one of they key design decisions
in DataComp. We now briefly review the other design decisions such as the division into two
competition tracks, our multi-scale structure and the construction of the candidate pool. Other
design decisions including our training and evaluation protocols are discussed in Sections 3.4 and 3.5.

Competition tracks. As mentioned above, the two key steps in assembling a training dataset are
filtering an existing pool of data [119, 120, 15] and aggregating different data sources [31, 32]. To
compare methods for these two approaches separately, DataComp has two tracks: filtering, where
participants must select a subset of the samples from CommonPool, and Bring Your Own Data
(BYOD), where participants are allowed to use any source of external data. The tracks are described
in Sections 3.2 and 3.3, respectively.

Competition scales. To facilitate the study of scaling trends and accommodate participants with
various levels of computational resources, we structure DataComp using four scales of compute:
small, medium, large and xlarge. Each new scale increases the number of samples seen during
training by 10× (from 12.8M to 12.8B samples seen), and the pool we provide by the same factor
(from 12.8M samples to 12.8B samples). Table 2 describes the experimental configuration used for
training at each scale.

Preprocessing and safety. Creating a dataset from a noisy web source such as Common Crawl
involves many design decisions, e.g., whether one should de-duplicate images, keep only English
captions, or restrict the image sizes. We decided to grant participants a high degree of autonomy
and kept our initial preprocessing of CommonPool to a minimum, leaving these design decisions
open for exploration. Our only initial preprocessing steps are to eliminate images that appear in
downstream evaluation datasets or are flagged due to safety considerations. For the latter, we take
steps to eliminate illegal and explicit content and to protect the privacy of individuals. Specifically,
we remove unsafe images and captions with automated filters and obfuscate faces in the candidate
images we provide. Section 3.2 describes these steps in more detail.

Competition rules. We include comprehensive rules in Appendix A. Briefly, for the filtering track,
we do not allow usage of test images from our evaluation suite, but do allow users to use the training
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Figure 2: Data funnel going from potential samples found in Common Crawl to the 13.1B image-text
pairs that were suitable for CommonPool. We sampled uniformly 12.8B datapoints for the xlarge
CommonPool.

images for their filtering algorithms. For BYOD, we like-wise allow the use of training sets, but lift
the restriction that CommonPool must be used.

3.2 CommonPool generation

We construct CommonPool, a large-scale dataset of image-text pairs sourced from Common Crawl.1

Our pool construction pipeline has four major steps: URL extraction and data download, NSFW
detection, evaluation test set deduplication, and face blurring. We additionally provide metadata
(e.g., CLIP features) for each sample in the pool. Starting from the xlarge CommonPool, we
take successive random subsets to create large, medium, and small CommonPool (e.g., medium is a
subset of large). An overview of the effect of each step in our pool generation pipeline in shown in
Figure 2.

Extracting urls and dowloading data. We first use Apache Spark [143] to extract image urls
with nonempty alt-text from all Common Crawl dumps from 2014 to 2022. We deduplicate the
resulting set of image url, alt-text pairs and conduct a global shuffle, which results in ∼88B possible
samples. Not all samples are downloadable due to dead links; other samples are not suitable for
inclusion in CommonPool due to NSFW content or overlap with our evaluation sets. Hence, we
attempt to download ∼40B samples using img2dataset2 resulting in ∼16.8B successfully downloaded
image-text pairs. For details, see Appendix D.

NSFW preprocessing. Since Common Crawl is a snapshot of the internet, we require strict
preprocessing to remove unsafe content. We first use Detoxify [53] to prune samples that contain
unsafe text (e.g., obscene, sexually explicit, or threatening language). We also employ an image
classifier to discard explicit visual content. To do so, we train a classifier on CLIP ViT-L/14 [102]
features, using the NSFW dataset used in LAION-5B [120]. We validate our classifier against the

1https://commoncrawl.org/
2https://github.com/rom1504/img2dataset/
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Google commercial image safety API. See Appendix E for details. Overall, ∼19% of image-text pairs
are considered NSFW, taking our pool of ∼16.8B downloads to ∼13.6B samples.

Evaluation set deduplication. To prevent accidental overfitting to certain test sets in our
evaluation suite, we perform a thorough near-duplicate removal between the candidate pool and
our evaluation sets, using a state-of-the-art image deduplication model [138]. Appendix F contains
additional details. The model flags ∼3% of the 16.8B images as near-duplicates, reducing the ∼13.6B
pool to ∼13.1B samples. From here we select a random subset to get the xlarge pool of 12.8B
samples.

Face detection & blurring. To protect the privacy of individuals, we detect and blur faces from
images in our pool using a face detector [48]. As observed by Yang et al. [136], obfuscating faces has
little impact on model performance, as we also observe in our experiments (Appendix G).

Pool metadata. Motivated by the LAION-400M data curation procedure, which employs similarity
scores between CLIP image and text features, we compute additional metadata for each sample in
CommonPool. To bootstrap participants in their exploration of filtering algorithms, we provide
image url, alt-text, original image width and height, CLIP image and text features, and CLIP image-
text similarity scores. We also release a SHA256 hash of each image to guard against data poisoning
in subsequent CommonPool downloads [17]. For additional details see Appendix H. Metadata is
meant to ease the computational burden on participants; however, we encourage exploring curation
techniques that go beyond the provided metadata.

3.3 Bring your own data (BYOD)

While CommonPool can be used to study different filtering techniques, state-of-the-art models are
often trained on heterogeneous data pools from different sources. For instance, the Flamingo model [4]
uses both curated data from multimodal massive web (M3W) and the ALIGN dataset [64]. To
facilitate non-proprietary research on curating data from many sources, we instantiate a separate track
in DataComp to allow participants to combine multiple data streams. For example, participants
could construct a training set from CC12M [19], YFCC100M [129], and data sources they label
themselves. In Section 4.2 and Appendix O.2 we describe our exploration of using other public
datasets.

3.4 Training

We create a common experimental setting that enables controlled and comparable experiments by
fixing the training procedure (i.e., model architecture, optimizer, loss, hyperparameters, etc.) and
compute at each scale. We closely follow the training recipe used to train state-of-the-art CLIP
models from Radford et al. [102], training models from scratch with a contrastive objective over
images and captions. Given a set of image-caption pairs, we train an image encoder and a text
encoder such that the similarity between the representations of images and their corresponding text
is maximized relative to unaligned pairs.3

3More precisely, given a batch of data {(x1, y1), ..., (xB , yB)} with images x and captions y, we train the image
encoder g and text encoder v with the loss ` = 1

2

∑B
i=1

σii∑B
j=1 σij

+ 1
2

∑B
i=1

σii∑B
j=1 σji

, where σij = exp 〈g(xi), h(yj)〉.
We also use a learnable temperature parameter as in Radford et al. [102].
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For each scale, we use a fixed model architecture and set of hyperparameters. We pick Vision
Transformers (ViTs) [34] as the image encoder, considering the better scaling trends observed by
Radford et al. [102] compared to ResNets [55]. The size of the model varies with the scale, using
a ViT-B/32 for the small and medium scales, a ViT-B/16 for the large scale and ViT-L/14 for the
xlarge scale. Models are trained for a fixed number of steps determined by the scale (Table 2), using
the OpenCLIP repository [61]. We closely follow the training procedure from Radford et al. [102],
using the Adam optimizer [72] with decoupled weight decay [85] on all weights except gains or biases
with β1 = 0.9, β2 = 0.98 and weight decay of 0.2. For the xlarge scale, we use β2 = 0.95 to prevent
instability. The models are trained with automatic mixed precision and a cosine annealing learning
rate schedule [84]. For the small scale, our internal training runs took four hours on one A100 GPU,
and for the xlarge scale, 81 hours on 512 GPUs. Additional details including other scale-specific
hyperparameters are shown in Appendix M.

3.5 Evaluation

We evaluate on an extensive suite of 38 image classification and retrieval tasks. We also provide
an in-depth analysis on two fairness-related datasets, detailed in Section 5 and Appendix P. Image
classification datasets range from satellite imagery recognition to classifying metastatic tissues from
histopathologic scans, including (with some overlap): 22 of the datasets evaluated in Radford et al.
[102], 6 ImageNet distribution shifts, 11 datasets from the Visual Task Adaptation Benchmark
(VTAB) [144], and 3 datasets from the WILDS benchmark [75, 118]. Retrieval datasets include the
Flickr30k [139] and MSCOCO image and text retrieval datasets [21], as well as the WinoGAViL
commonsense image-text associations task [12]. To aggregate results over all evaluation tasks, we
average the preferred metric for each task. As discussed in Section 3.2, we remove all test set images
from the pool we provide to avoid contamination.

DataComp adopts a zero-shot evaluation protocol, which means models are tested without training
on the evaluation tasks. This approach is computationally efficient and measures a model’s ability
to perform well without any additional training, in contrast to methods such as linear probing
or end-to-end fine-tuning. As an additional validation step, we find a strong correlation (>0.99)
between performance using a linear probe and that in a zero-shot setting, as seen in Appendix Figure
17. Additional details are in Appendix N.

4 Baselines

4.1 Filtering baselines

We study six simple filtering methods for the filtering track; see Appendix O.1 for further details.

No filtering. We simply use the entire pool as the subset, without any filtering. Since each pool
size is equal to the sample budget, training consists of one pass over the data.

Random subsets. To isolate the effects of increasing the compute budget from increasing the
dataset size, we form subsets consisting of 1%, 10%, 25%, 50% and 75% of the pool chosen at
random.

Basic filtering. We consider a number of simple filtering operations inspired by Schuhmann et al.
[119] and Byeon et al. [15]: filtering by language (only English captions, using either fasttext [68] or
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cld3 [1]); filtering by caption length (over two words and 5 characters); and filtering by image size
(smaller dimension above 200 pixels and aspect ratio below 3). We also experiment with combining
the first two methods (language + caption length) and all three (language + caption length + image
size). Unless otherwise specified, “basic” refers to filtering by fasttext language, caption length, and
image size.

CLIP score and LAION filtering. We experiment with the main filtering strategy employed
by LAION, where we take only examples where the cosine similarity score between CLIP image
and text embeddings exceeds a pre-defined threshold. We investigate a range of thresholds and
two OpenAI CLIP models for computing the scores: the ViT-B/32 model (as in LAION) and the
ViT-L/14. Furthermore, we combine CLIP score thresholds and English filtering using cld3 in order
to reproduce the LAION-2B filtering scheme. Table 14 in Appendix O.1 summarizes the different
CLIP score threshold configurations.

Text-based filtering. We select examples that contain text overlapping with ImageNet class names,
which serves as a proxy for relevance to downstream tasks. Specifically, we select English captions
(according to fasttext) that contain words from synsets corresponding to classes in ImageNet-21K or
ImageNet-1K [32].

Image-based filtering. We select a subset of examples whose visual content overlaps with ImageNet
classes. After applying language (fasttext) and caption length filtering on the data, we cluster the
image embeddings extracted from the OpenAI ViT-L/14 model of the candidate pool into 100K
groups using Faiss [66]. We then find the nearest neighbor cluster center for every ImageNet training
example, and keep examples whose corresponding cluster center is a nearest neighbor to at least one
ImageNet image. We apply this procedure using either ImageNet-21K (14M images) or ImageNet-1K
(1.2M images), forming two subsets.

4.2 BYOD baselines

We experiment with multiple external data sources, including four moderately sized datasets (10 to
58M samples) studied by Nguyen et al. [93]—CC12M [19], YFCC15M [129, 102], RedCaps [33] and
Shutterstock [93]—and the larger LAION-2B [120]. Additional experiments, along with more details
about the data sources are provided in Appendix O.2. We consider these data sources as they are
and do not perform additional preprocessing. We also present experiments combining some of the
data sources (using only the external datasets, or in addition to data from our pool).

5 Results and discussion

5.1 Building better datasets

Main results. Our key results are in Table 3. Most notably, the intersection between image-based
filtering and CLIP score filtering taking the top 30% examples with highest scores using a ViT-L/14
model excels on most tasks. The exception is for the small scale and the retrieval datasets, where
other filtering approaches perform better.4 Furthermore, other filtering strategies like basic, CLIP
score, image-based, text-based filtering show better downstream performance when compared to

4Cherti et al. [23] also observe that models rank differently on classification and retrieval tasks.
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Table 3: Zero-shot performance for select baselines in the filtering track. On all scales, various
filtering strategies lead to better performance than using the entire pool without filtering. The
intersection between imaged-based and CLIP score strategies performs well on most tasks and scales.
For all metrics, higher is better (see Appendix N for details). ∩ denotes the intersection between
filtering strategies.

Dataset Samples ImageNet Average over
Scale Filtering strategy

size seen
ImageNet

dist. shifts
VTAB Retrieval

38 datasets
No filtering 12.8M 12.8M 0.025 0.033 0.145 0.105 0.132
Basic filtering 3M 12.8M 0.030 0.040 0.149 0.111 0.137
Text-based 3.2M 12.8M 0.046 0.052 0.169 0.112 0.156
Image-based 3M 12.8M 0.043 0.047 0.178 0.112 0.158
LAION-2B filtering 1.3M 12.8M 0.031 0.040 0.136 0.085 0.133
CLIP score (L/14 30%) 3.8M 12.8M 0.051 0.055 0.190 0.108 0.172

small

Image-based ∩ CLIP score (L/14 30%) 1.4M 12.8M 0.039 0.045 0.162 0.089 0.144
No filtering 128M 128M 0.176 0.152 0.259 0.174 0.254
Basic filtering 30M 128M 0.226 0.193 0.284 0.192 0.280
Text-based 31M 128M 0.255 0.215 0.328 0.183 0.301
Image-based 29M 128M 0.268 0.213 0.319 0.193 0.307
LAION-2B filtering 13M 128M 0.230 0.198 0.307 0.170 0.287
CLIP score (L/14 30%) 38M 128M 0.273 0.230 0.338 0.183 0.323

medium

Image-based ∩ CLIP score (L/14 30%) 14M 128M 0.297 0.239 0.346 0.170 0.323
No filtering 1.28B 1.28B 0.459 0.378 0.426 0.305 0.428
Basic filtering 298M 1.28B 0.516 0.423 0.446 0.353 0.448
Text-based 317M 1.28B 0.561 0.465 0.465 0.352 0.466
Image-based 293M 1.28B 0.572 0.454 0.483 0.353 0.471
LAION-2B filtering 130M 1.28B 0.553 0.453 0.510 0.365 0.491
CLIP score (L/14 30%) 384M 1.28B 0.578 0.474 0.538 0.342 0.520

large

Image-based ∩ CLIP score (L/14 30%) 140M 1.28B 0.631 0.508 0.546 0.369 0.527
No filtering 12.8B 12.8B 0.723 0.612 0.611 0.441 0.611
LAION-2B filtering 1.3B 12.8B 0.755 0.637 0.624 0.503 0.627
CLIP score (L/14 30%) 3.8B 12.8B 0.764 0.655 0.643 0.468 0.641

xlarge

Image-based ∩ CLIP score (L/14 30%) 1.4B 12.8B 0.792 0.679 0.652 0.489 0.653

no filtering. While Table 3 shows a summary of our key results, we present a much larger suite of
experiments in Appendix Q.

DataComp leads to better image-text datasets. We hope DataComp catalyzes the search
for the next generation of multimodal datasets. Towards this end, we contribute DataComp-1B,
which is a direct result of the DataComp benchmark workflow. DataComp-1B is the output from
the Image-based ∩ CLIP score (L/14 30%) baseline filter at the xlarge scale of the filtering track.
Our dataset is comprised of 1.4B samples, which is smaller than the LAION-2B dataset with 2.3B
samples. Additionally, DataComp-1B is built from a smaller pool than the one used to create
LAION-2B, which means direct comparisons are likely skewed in favor of LAION-2B. Nevertheless,
a CLIP L/14 trained on DataComp-1B outperforms the LAION-2B competitor by 6.1 percentage
points on ImageNet as seen in Table 1. Moreover, training on DataComp-1B improves ImageNet
accuracy by 3.7 percentage points over OpenAI’s ViT-L/14 trained with the same compute budget.
These results underscore the impact that DataComp can make and provide a promising foundation
upon which participants can build.

External data sources can improve performance. Table 4 shows results for several baselines
in the BYOD track. Compared to the best baselines in the filtering track, training on each external
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Table 4: Zero-shot performance for select baselines in the BYOD track. External data sources
can be effective in isolation or in combination with CommonPool. Moreover, upsampling external
curated sources can improve performance.

Scale Data source
Dataset Samples

ImageNet
ImageNet

VTAB Retrieval
Average over

size seen dist. shifts 38 datasets
CC12M 10M 128M 0.245 0.189 0.283 0.206 0.266
YFCC15M 15M 128M 0.232 0.137 0.263 0.174 0.251
RedCaps 11M 128M 0.237 0.166 0.271 0.150 0.261
Shutterstock 58M 128M 0.342 0.209 0.364 0.248 0.323
4 external sources 109M 128M 0.378 0.262 0.392 0.210 0.348
CommonPool, CLIP score filter 38M 128M 0.273 0.230 0.338 0.183 0.323

medium

+ 4 external sources 147M 128M 0.372 0.269 0.401 0.203 0.357
LAION-2B 2.3B 1.28B 0.585 0.472 0.504 0.399 0.505
CommonPool, CLIP score filter 0.4B 1.28B 0.578 0.474 0.538 0.342 0.520
+ 4 external sources 0.5B 1.28B 0.609 0.508 0.546 0.303 0.525

large

+ 4 external sources (upsampled 2x) 0.5B 1.28B 0.621 0.509 0.547 0.315 0.530
LAION-2B 2.3B 12.8B 0.757 0.631 0.611 0.502 0.612
CommonPool, CLIP score filter 3.8B 12.8B 0.764 0.655 0.643 0.468 0.641xlarge
+ 4 external sources (upsampled 6x) 3.9B 12.8B 0.776 0.671 0.633 0.410 0.638

data source separately for the medium scale performs worse, but using all four sources together
significantly improves accuracy, especially on ImageNet. At the large scale, combining CLIP-filtered
data from the filtering track with external data from the four sources further boosts ImageNet
accuracy by up to 4.3 percentage points. This approach also surpasses using LAION-2B. In Appendix
O.2 we further examine the external data sources and show additional experiments.

English filtering is helpful but not necessary. Given that the prompts used in downstream
tasks are in English, a natural question is how critical is English filtering for achieving good
performance. We try filtering our pool by removing non-English captions, with both cld3 and
fasttext as language detectors. Although the two vastly differ in percentage of English captions
detected (20% and 50% respectively), filtering with both of them results in similar performances at
all scales. For basic filtering, English filtering is a key component in our best performing baselines
(see Appendix Q). On the other hand, English filtering is not necessary to achieve good performance.
When using English filtering in combination with CLIP score filtering, performance stays the same
or decreases at all scales. Figure 24 in the appendix suggests that CLIP score filtering implicitly
does some English filtering, which may be a result of the CLIP models being trained on English
filtered data [102].

Trade-off between data diversity and repetition. When we have large pools of data, is it
useful to see samples more than once during training? In Figure 3, we show that randomly selecting
subsets of the pool typically has little effect or degrades performance; when only small fractions are
used, performance drops substantially. In contrast, when filtering with CLIP scores, the optimal
training set comes from selecting ∼30% of the pool with the highest scores. The difference in
performance between filtering with CLIP scores and using random subsets while using the same
number of training samples again highlights the importance of different strategies for selecting
samples.

13



0.0 0.5 1.0
Fraction of the pool

used for training

0.0

0.2

0.4

0.6
Im

ag
eN

et
 a

cc
ur

ac
y

ImageNet

0.0 0.5 1.0
Fraction of the pool

used for training

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e 

pe
rfo

rm
an

ce

Average over 38 datasets

small scale
medium scale
large scale
CLIP score (L/14)
CLIP score (B/32)
Rand. subset

Figure 3: Performance of random subsets (dotted line) and CLIP score filtering (solid line) when
varying the subset size. When taking random subsets larger subsets are always better, but other
filtering functions such as CLIP score perform best with subsets of intermediate size.
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Figure 4: Performance as a function of the number of training samples from the medium scale. There
is a significant variance in accuracy even when accounting for the size of the training set, suggesting
that size is not the only determining factor of the quality of a dataset. Results for additional scales
are shown in Appendix Figure 23.

5.2 DataComp design analyses

CommonPool and LAION are comparable with the same filtering. To validate our pool
construction, we show that we can build datasets comparable to LAION-2B by employing their
filtering technique on our pool. LAION-2B selects all samples where the caption is in English and
the cosine similarity score from a trained ViT-B/32 CLIP model is above 0.28. We compare this
filtering approach on our pool using the same number samples, 130M samples at the large scale.
Our experiments show that the different data sources perform comparably when using the same
filtering strategy: 55.3% vs 55.7% accuracy on ImageNet, and 0.491 vs 0.479 average performance

14



0.00 0.02 0.04
ImageNet acc. (small)

0.0

0.1

0.2

0.3
Im

ag
eN

et
 a

cc
. (

m
ed

iu
m

)
ImageNet

0.075 0.100 0.125 0.150 0.175
Avg. performance (small)

0.10

0.15

0.20

0.25

0.30

Av
g.

 p
er

fo
rm

an
ce

 (m
ed

iu
m

) Average over 38 datasets

Basic
CLIP score
Image-based
No filtering
Rand. subset
Text-based

Figure 5: Correlation between performance at small and medium scales for various filtering strategies.
The trends suggest that experiments at smaller scales can serve as useful guides for larger scales.
Results for additional scales are shown in Appendix Figure 22.

over our evaluation sets using our pool and LAION-2B, respectively.

Training set size alone does not explain performance. We find a significant variation in
accuracy even when accounting for the size of the filtered training set at a given scale. As shown in
Figure 4, different choices of filtering can substantially impact performance, even when the size of
the resulting dataset is comparable and the scale is fixed. For example, cld3 English filtering and
CLIP score top 20% are almost the same size, yet the CLIP score approach performs substantially
better at all scales.

Consistency across scales. We find that the ranking between filtering strategies is typically
consistent across different scales. This is illustrated in Figure 5, which shows that the baselines at
small and medium scales are positively correlated. Moreover, as shown in Table 20 in the appendix,
the rank correlations of performance is high, between 0.74 and 0.90 for different scale pairs.

Consistency across training hyperparameters. One potential concern is that modifying training
hyperparameters changes the relative ordering of different data curation methods in terms of
downstream performance. To test this, we examine the effect of increasing the number of training
steps in small filtering track baselines by 10×. We find a rank correlation of 0.71 on zero-shot
average performance. Though varying training hyperparameters can change the optimal filtering
method, these initial experiments suggest that the ordering is relatively stable. For more information
see Appendix L.

5.3 Evaluation trends

ImageNet accuracy is indicative, but not the complete picture. Similarly to Kornblith
et al. [76], in Appendix Figure 25 we find that ImageNet performance is highly correlated with
the average performance across all datasets we study, with an overall correlation of 0.99 using the
full evaluation suite.5 However, ImageNet performance is not representative of all evaluation tasks,

5Note that unlike Kornblith et al. [76] we evaluate zero-shot performance rather than transfer learning.
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as the correlation between ImageNet accuracy and accuracy on other individual datasets varies
substantially, in some cases even exhibiting a negative correlation, as discussed in Appendix Q.

Robustness and fairness. While typical models trained on a target task suffer large performance
drops under data distribution shift, zero-shot CLIP models exhibit consistently strong performance
across a wide range of distributions [102]. In Appendix Figure 26, we show that models trained with
data from our pool are more robust to distribution shift than ImageNet-trained models trained to
the same ImageNet accuracy from Taori et al. [128]’s testbed. Examining geographic diversity, we
find that our models are better than ImageNet-trained models, but fall short of models fine-tuned on
diverse curated datasets (see Appendix Figure 21). We also perform a face classification analysis and
identify demographic biases in our models: notably, introducing the BYOD datasets we consider can
increase the risk of misclassification. Full details of our fairness and diversity analyses are presented
in Appendix P.

6 Conclusion and future work

We introduce DataComp, a new benchmark for curating image-text datasets. DataComp allows
for controlled experiments in dataset creation, enabling a similar paradigm as that seen in model
development. Our benchmark supports experiments both augmenting our candidate pool with
examples from new data sources, or coming up with new filtering approaches. In either case, our
infrastructure makes experimenting with data curation ideas far simpler than creating an entire
large dataset from scratch, and also provides a controlled environment that allows rigorous empirical
experimentation. We believe that such an approach to dataset development will accelerate progress in
machine learning because key datasets such as ImageNet or LAION-2B are currently rarely updated
(if at all), while researchers develop many generations of new models on the same dataset.

In its current form, DataComp is a first step towards improving training datasets. We see several
interesting directions for future work, including:

Curating more data sources. CommonPool and LAION-2B only draw text annotations from
alt-text in the HTML img tags. Parsing websites more intelligently will likely unlock higher quality
text annotations. In addition, identifying further data repositories and conducting broader or more
targeted web crawls will hopefully yield better training data. Beyond real data, synthetic data from
generative models or physics-based rendering are also promising directions.

Improved data filtering. So far we only experimented with basic filtering techniques in our
baselines. We expect that better text processing, using alternative multimodal models as features,
or other clustering approaches will result in better filtering methods for multimodal dataset design.

Further supervision signals. CommonPool relies entirely on the original captions from Common
Crawl. Running image captioning models on the collected images may offer an alternative supervision
signal and make it possible to train on images that do not come with a text annotation. In addition,
bounding boxes for object detection or segmentation masks could be further useful information to
incorporate into the training set.

More modalities. Beyond image-text pairs, contemporary machine learning relies on many
additional forms of large pre-training datasets. Natural candidates for benchmarks similar to
DataComp are text, video, structured documents, 3D objects, or graph-structured data. Moreover,
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as researchers build foundation models for specific scientific domains such as remote sensing,
understanding data curation in specialized domains is also an important direction for future work.

Broader evaluations. Beyond our evaluation suite, researchers could investigate additional domains
and tasks such as image generation, visual question answering, captioning and embodied tasks such
as vision-and-language navigation. Moreover, our evaluation suite could be expanded beyond English
to include multilingual tasks.

Extended scaling trends. While medium-scale experiments in DataComp usually predict performance
at larger scales well, there are also phenomena that still appear puzzling. For instance, the 12.8M
scale does not always predict the larger scales accurately, and the gains from our current BYOD
experiments shrink with increased scale. Reliably extrapolating these performance changes across
compute and data scales would assist future dataset design. And ideally, experiments on ever smaller
scales than 12.8M would yield useful signal. Finally, it would be important to better characterize
how data curation methods compare under different choices for model size and compute budget.

Combining data sources. While combining different data sources often leads to better performance
than any individual source, in many cases the combination is worse than simply using the best source.
Even when combining multiple data sources is productive, there is still the question of whether and
by how much to upsample each source, which has a direct impact on performance. While we present
related initial experiments in the BYOD track, a more complete understanding of the optimal way
to combine data sources is an exciting research direction for future work.
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A Benchmark rules

We provide concrete rules below for the two competition tracks that comprise DataComp: filtering
and BYOD. Additionally, we provide a checklist, which encourages participants to specify design
decisions, hence allowing for more granular comparison between submissions.

A.1 Filtering track rules

• Participants can enter submissions for one or many different scales: small, medium, large or
xlarge, which represent the raw number of image-text pairs in CommonPool that should be
filtered.

• After choosing a scale, participants generate a list of uids, where each uid refers to a
CommonPool sample. The list of uids is used to recover image-text pairs from the pool,
which is used for downstream CLIP training.
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• Duplicate uids are allowed.

• Participants are not allowed to modify the training procedure. Hence, changing hyperparameters,
model architecture, optimizer, compute budget, or number of training steps is not allowed.
Changing any other training details is also not allowed.

• Participants are strongly encouraged to submit and open-source both the list of uids and the
code used to generate this list; however, this is not required.

• To avoid overfitting, we do not permit running any code or algorithmic dependence on the test
images of the evaluation tasks. However, use of other images associated with these tasks (e.g.,
supervised training sets) is permitted.

• Participants can use templates or class labels from the downstream tasks in their filtering
algorithms.

For clarity, we include some examples of permitted and forbidden uses:

X We permit using the ImageNet class label “triceratops” in a filtering algorithm.

× We forbid examining individual or aggregate predictions on the test sets of the evaluation
tasks.

A.2 Bring your own data track: amendments

To facilitate more open-ended exploration, we provide amendments to the Track 1 competition to
allow for more diverse submissions in Track 2.

• Participants are allowed to augment CommonPool data with existing datasets, so long as
these data sources do not contain test images from the evaluation tasks. Participants can use
data from any CommonPool; however, they are not required to do so.

• Assembling one’s own dataset is allowed; however, test images from the evaluation tasks can
neither be contained nor otherwise used to construct said dataset. We encourage releasing the
image urls or the images themselves in addition to the text for each image. We also encourage
rigorous documentation of face-blurring and other data safety checks (see Section 3.2 for more
details). We reserve the right to run our own safety code on participant provided data and
disqualify entries that do not meet adequate safety standards.

Checklist. The following checklist provides the basis for more fine-grained comparison between
submissions.

� Images from the evaluation tasks are included in my submission. If yes, please specify which
datasets.

� I used an existing datasets (e.g., YFCC100M [129]) in my submission. If yes, please specify
which datasets. (Note: applies to BYOD only)

� I curated my own data. If yes, please provide (1) image data or urls, (2) text for each image,
(3) list of safety steps taken including but not limited to face blurring, explicit content image
and text filtering. (Note: applies to BYOD only)
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Kalyani Marathe, Thao Nguyen, Eyal Orgad (co-lead), Georgios Smyrnis, Mitchell Wortsman, Jieyu
Zhang (co-lead)

BYOD track. Gabriel Ilharco, Thao Nguyen

Experiment babysitting. Alex Fang, Gabriel Ilharco, Samir Yitzhak Gadre

B.4 Leadership and Advising

Advising. Romain Beaumont, Yair Carmon, Alexandros G. Dimakis, Ali Farhadi, Hannaneh
Hajishirzi, Jenia Jitsev, Pang Wei Koh, Ranjay Krishna, Stephen Mussmann, Sewoong Oh, Alexander
Ratner, Olga Saukh, Ludwig Schmidt, Vaishaal Shankar, Shuran Song, Richard Vencu

Leadership. Yair Carmon, Alexandros G. Dimakis, Jenia Jitsev, Sewoong Oh, Ludwig Schmidt,
Vaishaal Shankar

Overall project lead. Ludwig Schmidt
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C Additional related work

Beyond data selection, Chan et al. [18] investigate the effects of dataset distribution on emergent
properties of transformers, while Fang et al. [39] look at the relationship between data and model
robustness to distribution shifts. We hope our extensive evaluation suite comprised of 38 diverse
tasks To facilitate similar studies when training multimodal models at large scale.

Others study how to reduce the burdens of training data annotation in the curation process. Classic
approaches include distant supervision [60], crowd-sourced labels [142], heuristic rules [5] and feature
annotation [88], among others. A recent line of work known as data programming or programmatic
weak supervision [109, 110, 145, 146] attempts to reduce annotation cost and is found in many
industry applications [6, 111]. In data programming, developers write programmatic labeling
functions to automatically label a large amount of unlabeled data. The labeling functions could
produce noisy and conflicting labels, so researchers have developed methods to aggregate noisy votes
to produce the final training labels [108, 42, 123].

Previous literature also studies methods for training data attribution, which seek to link a model’s
behavior (e.g., its accuracy on a particular task or subset of data) to particular subsets of its training
data. Such methods include influence functions, a classic technique from robust statistics [51, 30] that
uses a second-order Taylor expansion to approximate the effect of removing a training point on the
learned model parameters [73, 74, 52, 47], as well as methods that fit attribution functions directly to
the dynamics of repeated training runs [44, 100, 62, 50]. Training data attribution methods assume
that we have already trained a model, though they can be subsequently used to refine the training
data (e.g., by identifying potentially mislabeled training points [73]). Our focus in this paper is
instead on data curation methods—that is, methods for selecting a subset of the training data to
train a model in the first place.

In the context of natural language processing, Swayamdipta et al. [127] proposes a tool for
characterizing samples in a dataset based on training dynamics, labelling instances as ambiguous,
easy to learn or hard to learn. Previous literature such as work by Le Bras et al. [80], Li & Vasconcelos
[83], Gururangan et al. [49] advocate for removing easy instances from the training data. Ethayarajh
et al. [36] propose a measure of how difficult a dataset is to learn, V-usable information. Such
techniques could be promising directions of further exploration in the context of our benchmark.

Finally, another related line of work is studying scaling trends. In addition to Sorscher et al. [124],
researchers have investigated how model performance changes as a function of compute budget,
model size, and number of training samples [70, 59, 16, 23]. However, this line of work does not
consider how dataset design may affects scaling trends. Beyond dataset size, we measure the effects of
different dataset sources and filtering strategies. While scaling trends are central to our investigations,
the purpose of our benchmark is to search for the next generation of large multimodal datasets to
facilitate more accurate and reliable models.

D Parsing Common Crawl

Common Crawl releases metadata files for the websites that they index (i.e., WAT files). They
release these files approximately once a month. We consider all files available from 2014 through
November of 2022. We first parse these files, utilizing Apache Spark [143] to extract image urls
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Table 5: Detoxify positive rates by threshold on 1 million caption subset of Common Crawl.
Threshold Toxicity Severe Toxicity Obscene Identity Attack Insult Threat Sexual Explicit

0.01 9.5% 1.0% 33.4% 1.8% 35.0% 1.3% 2.0%
0.1 3.6% 0.1% 0.8% 0.3% 1.4% 0.1% 1.0%

Table 6: Comparing LAION-2B CLIP based NSFW filtering model to Google Vision API Safe Search
adult category on a 40,000 random subset of Common Crawl.

False Positive Rate True Positives
Threshold

(Relative to Google) (Manual Review)
Model Positive Rate Google API Positive Rate

0.1 3.6% 2 14.4% 3.5%
0.2 0.6% 2 9.1% 3.5%
0.3 0.3% 3 7.2% 3.5%

and corresponding alt-text. We map each url, text pair to a uid hash and remove duplicates. This
results in 88 billion url, text pairs, which are randomized via a distributed shuffle. Note, we do not
consider image content when running uid deduplication at this step. Hence, two identical images
with different urls and the same caption would both be retained.

E Not safe for work (NSFW) filtering

Our data is sourced from Common Crawl, which contains snapshots of the web. Therefore, we
apply multiple layers of NSFW content filtering to remove problematic images and captions from
CommonPool.

First, we filter our captions with Detoxify [53], a language model for toxic comment classification.
Specifically, we use the multilingual XLM-RoBERTa [29] variant. The model outputs scores between
zero and one for the following categories: toxicity, severe toxicity, obscene, identity attack, insult,
threat, and sexually explicit. As we had no ground truth for our data, we manually inspected
a 1 million random subset of CommonPool at varying thresholds. We found that a threshold
of 0.1 provided good coverage of filtering out NSFW text. If any of the detoxify category scores
exceeds the threshold, the sample is discarded. Qualitatively, we found that the model struggled with
multilingual content, acronyms, and innuendo. Even at 0.1, we noticed there are some captions that
are NSFW. However, lowering the threshold further heavily affected false positives. We therefore use
a 0.1 threshold for all NSFW categories, which on a random subset of one million captions achieves
positive rates shown in Table 5.

Second, on the vision side, we use a modified version of LAION-5B’s [120] CLIP-based binary
classification NSFW model, which takes CLIP ViT-L/14 visual embeddings as input. We remove
the initial multi-category encoder from the model, and retrain on the same data with an initial
normalization layer followed by a 4-layer multilayer perceptron. Our retrained model matches the
performance of the original model on their manually annotated testset. Specifically, we achieve 97.4%
classification accuracy on a held out test set compared to 96.1% for the original LAION NSFW
image filtering model. Additional details about the training data can be found in Appendix C.5 of
the LAION-5B paper. In brief, the training data contains 682K images that is roughly balanced
with images from safe for work and NSFW categories.
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Figure 6: Candidate images (top) that are detected as duplicates against images in the evaluation
sets (bottom) are removed from the pool. In addition to exact duplicate images, near-duplicates
with variable aspect ratios, JPEG compression, overlays, color adjustment, and artistic rendering
are also detected.

To evaluate our model and determine a threshold, we used Google Vision API’s SafeSearch explicit
content detector to generate labels for an 40,000 random subset of our candidate pool. Specifically,
an image is NSFW if SafeSearch classifies it as likely or very likely adult (i.e., sexually explicit). As
shown in Table 6, we found that by thresholding at 0.1 we achieve high recall relative to SafeSearch
and very few true positives after manual review. We also manually reviewed images classified by
SafeSearch as likely or very likely racy and found that the images were either benign, subjectively
suggestive but not explicit, or already found in the set of images labeled as adult.

F Deduplication against evaluation sets

To prevent data leakage, we filter CommonPool by removing duplicate and near-duplicate matches of
evaluation set images. See Figure 6 for example query images from Common Crawl and corresponding
near-duplicates in our evaluations sets. We consider images as duplicates when the cosine similarity
between a query (Common Crawl image) feature and a reference (evaluation image) feature is higher
than a fixed threshold. We employ the deduplication model proposed by Yokoo [138], which earned
1st place in the Facebook AI Image Similarity Challenge (ISC) [35]. We choose a cosine similarity
threshold of 0.604169 to maximize the true duplicates detected, without removing too many false
duplicates from the pool. We compare against OpenAI’s CLIP ViT-B/32 as a baseline on ISC. We
find that for our threshold, the ISC model achieves precision 0.9 and recall 0.8. At a threshold of
0.96, CLIP achieves the same precision 0.9, but a significantly worse recall of 0.02. Approximately
2.8% of downloaded samples are flagged as evaluation set near-duplicates.

To verify the performance of our de-duplication models with greater granularity, we modify the
evaluation procedure in Douze et al. [35] to include transformations which are representative of
naturally-occurring duplications on the Internet. Specifically, we study: 1) jpeg compression
(encoding), 2) image flips, 3) image rotations, 4) aspect ratio modifications, and 5) grayscaling. To
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Figure 7: Analysis of different de-duplication strategies across a variety of image transformations.
We see that the model introduced by Yokoo [138] is better in almost every transformation, with the
exception of very aggressive aspect ratio modification.

do this, we sample 20% of the images from each of our evaluation datasets uniformly at random
to serve as a reference set of about 140,000 images. Next we sample 560,000 images uniformly at
random from LAION-2B to serve as distractors, for a 4-to-1 distractor to reference ratio. Finally, we
apply each of the augmentations above and use threshold filtering to determine duplicates. Figure 7
shows the results from the deduplication model [138] compared with OpenAI’s CLIP ViT-L/14. At
high recall values, we see that CLIP filtering results in removing over 2× the data as that of the
deduplication model from Yokoo [138].

G Face blurring

As an extra step to safeguard against issues of privacy that may arise from the use of data scraped
from the web, we include face blurring as part of our pool creation. To create face metadata, we use
the SCRFD face detector [48] to extract bounding boxes for the faces in our images. These bounding
boxes are included as part of the image metadata in our pool. We make use of the pretrained
SCRFD-10G model. We use the same preprocessing as the one described in the official repository
of the paper, with the exception of providing 224× 224 input images (by padding each image to
square and then resizing) to limit computation costs. Invoking this model provides us with bounding
boxes along with an associated score, which we then compare against a threshold of 0.3 to keep or
discard this bounding box. This threshold is the default one used in the repository of SCRFD for
the visualization of bounding boxes, and we found it to perform well on our data as discussed next.

In Table 7 we can see the result of face detection on a set of 3293 images from CommonPool. We
evaluate the detection on whether the image has visible faces or not (where images such as cartoon
drawings of non-real human faces are not considered as positives), and whether the detector has
detected these visible faces. We considered an image as a true positive if all the clearly visible faces
in the image were detected, based on the above thresholding process. We did not do extensive
box labeling. True positives are instead determined by human inspection. We compare the quality
of these detections with the Amazon Rekognition system, which is the one upon which the face
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Table 7: Face detection performance on a set of 3293 random images from CommonPool.

SCRFD-10G Amazon Rekognition
Accuracy 93.87 96.57
Precision 75.87 86.09
Recall 90.53 93.75
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Figure 8: Frequency of predicted number of faces in the small CommonPool.

detections on ImageNet were based [136]. Note that in this scenario, the recall of the detectors is
more important than precision (as detecting a few more bounding boxes across our pool does not
affect privacy).

To utilize these bounding boxes on our data, we apply a standard blurring pipeline, as proposed by
Yang et al. [136]. The result of this process is an image where the faces is blurred and there is a
smooth transition from blurred to clean parts of the image. In Figure 8 we see the distribution of
faces for the small CommonPool. Note that the majority of images do not contain faces.

As part of our competition pipeline, images are by default blurred during the download process. In
Table 8 we can see the results of training on 100M images with and without the application of face
blurring, as provided by our detector. We can see that the difference in performance is small, which
suggests that the application of face blurring does not significantly affect the performance on our
downstream tasks.

Finally, we evaluated the detector we used for potential biases. More specifically, we used the
detector on the validation set of the FairFace dataset [71]. We found that the central face of the
image was detected in all the images of the validation set, regardless of subgroup.

H DataComp CommonPool creation pipeline
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Table 8: Effect of face blurring on zero-shot performance. Face blurring improves the privacy
preservation of our dataset, while affecting model performance negligibly. Results shown for the
medium scale.
Filtering Face blurring ImageNet acc. Avg. performance

× 0.209 0.246
CLIP score (B/32, thresh. 0.3) + English filtering

X 0.196 0.243
× 0.287 0.301

CLIP score (B/32, 30%)
X 0.282 0.298

Table 9: Provided metadata for CommonPool.
Generation Time Label Additional notes

uid
url Link to the image.
text Image caption.
original_width
original_height

Step 2

sha256 Safeguard for data poisoning.
clip_b32_similarity_score
clip_b32_image_features In separate file.
clip_b32_text_features In separate file.
clip_l14_similarity_score
clip_l14_image_features In separate file.
clip_l14_text_features In separate file.

Step 1

face_bboxes
nsfw_image_score
nsfw_text_scoreStep 2, dropped during Step 3
dedup_score

Creating CommonPool was a multistep process, which involved (1) parsing image urls and alt-text
from Common Crawl dumps and downloading these images, (2) tagging images with metadata and
(3) conducting safety content filtering and evaluation set duplication. In this section we provide an
overview of the data pipeline used to create CommonPool. For an overview of our “data funnel”
see Figure 2.

1. For the first step, we use parse Common Crawl metadata files to harvest image-text pairs
(Section D). We use img2dataset7 to obtain ∼16.8B downloaded samples. This is the first,
unfiltered version of CommonPool, and contains only basic information for our images (i.e.,
the original image height, width, and alt-text caption). During this step we also resize images
such that their largest dimension does not exceed 512px. This eases storage requirements for
large images, but is still larger than the 224px resolution used for later training stages.

2. For the second step, we process our unfiltered pool and create richer metadata for each
image-text pair. We generate the following for each sample:

• CLIP ViT-B/32 and CLIP ViT-L/14 image and text features, with their associated
7https://github.com/rom1504/img2dataset
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similarities.

• NSFW scores for the image and the text, using the analysis described in Appendix E.

• Deduplication score for the image, as described in Appendix F.

• Bounding boxes for faces detected in the image, using the method described in Appendix
G.

3. For the third and final step, we filter our image-text pairs based on the metadata generated
during the second stage. We filter out image-text pairs where the NSFW and deduplication
scores exceed the respective thresholds (Section E). From the images that pass through this
filtering, we keep only the desired amount (e.g., 12.8B images from the xlarge CommonPool).
Smaller pools are telescoping subsets of larger pools. We package the metadata and image
urls, which is made publicly available to the participants. Note, we do not release raw image
data but rather image urls pointing to images.

A summary of the metadata for each sample is found in Table 9. To validate our pipeline for
duplication and CLIP feature correctness, we additionally take ImageNet train though metadata
generation as a unit test. Using the deduplication features, we detect that 100% of the images are in
fact duplicates. Additionally using the CLIP ViT-B/32 and CLIP ViT-L/14 image features and
corresponding text features from OpenAI’s 80-prompt ensemble, we achieve 63.36% and 75.54%
top-1 accuracies, which match the performance reported in the CLIP paper [102].

When creating pools of different scale (i.e., number of samples), we ensure that smaller pools
are subsets of larger pools. For instance, the small CommonPool is a subset of the xlarge
CommonPool.

After CommonPool is created, the participants can then download the final image-text pairs using
the provided files via img2dataset. To further ease the computational burden on participants, we
additionally provide metadata for each sample in CommonPool. Note that when downloading,
our img2dataset configuration automatically blurs faces. Hence this is an automatic step on not
something participants must do ad hoc.

I CommonPool statistics

To provide more information about the kinds of samples in our CommonPool, we conduct additional
analysis on the small pool, which is an i.i.d. sample of downloaded data and a subset of the larger
pools.

In Figure 9 we show CLIP similarity similarity scores between images and their corresponding text.
We notice a flatter distribution of CLIP ViT-L/14 scores than corresponding B/32 scores.

Turning our attention to images in CommonPool, in Figure 10, we visualize the aspect ratios and
sizes of original images (i.e., before they are downloaded and resized). In Figure 11, we display a
distribution of image height and width after download resizing. Notice that the majority of images
are around 224× 224px, which is the final resized resolution used for training.

Analysing the textual component of each sample, we visualize frequency of the number of CLIP
BPE tokens in the captions (Figure 12) and most common languages (Figure 13). Token counts
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Figure 9: Image-text similarity score distributions using CLIP ViT-B/32 (left) and ViT-L/14 (right)
models. We plot samples from the small CommonPool, which are an i.i.d. sample of the xlarge
CommonPool.

Figure 10: Statistics for images in the small CommonPool, before applying resizing.

follow a long-tailed distribution with much more mass in the short sequence range, while English is
the predominant language in CommonPool according to fasttext and cld3.

We additionally look at url statistics. In Figure 14 we see common domain names in CommonPool
(e.g., wordpress domains) and common suffixes (e.g., .com or .net).
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512px

224px

384px

Expectation value of a pixel being occupied for 12.8m pool after download (max dim no more than 512px)

Figure 11: Image pixel heatmap. Each entry in the above heatmap represents the estimated
probability that a pixel is occupied. The center entry has a value of 1.0 as every image has a
center pixel. We compute the heatmap over the small CommonPool. Note that image sizes are
bounded as we resize all images such that their max dimension does not exceed 512px during dataset
download.

Figure 12: Distribution of token length for alt-text in the small CommonPool. The CLIP BPE
tokenizer is used for tokenization.
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cld3fasttext

Figure 13: Counts for the top 25 most frequent languages in the small CommonPool, as predicted
by fasttext (left) and cld3 (right).

Figure 14: Counts for the top 25 most frequent domains (left) and suffixes (right) in the small
CommonPool.
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J Efficient training on data subsets

When training at large scale, it is important to use efficient access patterns to load training data.
This typically means that data must be loaded using large sequential reads instead of random reads
in order to maximize throughput. In DataComp, this is facilitated by the WebDataset8 format
which stores the training examples in tar files (called “shards”) and WebDataLoader which makes it
easy to load data stored in this format.

Given an arbitrary subset of a pool, we would like to efficiently train on that subset. Because
WebDataset format does not permit efficient random access (a feature inherited from tar), we must
read through the entire pool to select the required images. There are two ways to implement this
filtering:

1. Filter during training: we apply a predicate during training data loading that discards data
not present in the subset.

2. Filter before training: we iterate over the pool, selecting the images in the subset, and
write them to a new WebDataset.

After some profiling, we concluded that option 1 had too much overhead in the case where the subset
is much smaller than the pool. To see why, note that if the subset is an p-fraction of the pool size,
then we would end up reading a 1/p factor more data than needed for training. Instead, we give an
implementation of option 2, which performs at most twice as many reads as needed for training.9

Our tool, called the resharder, reads a set of uids in NumPy array format, scans through the pool,
selecting those examples, and writes them to a new WebDataset. The resharder uses multiprocessing
to make good use of hardware and can be distributed over many computers to further increase
throughput. The resharder also supports streaming data to and from cloud storage such as Amazon
S3. The resharder is provided to participants as part of the competition tooling.

K Effect of duplicates in the training data

Given that CommonPool was constructed by scraping the web for image and text pairs, there
is a likelihood that some of our images are duplicates of each other, even if they originated from
different web sources and have different captions. Here we examine the effect of removing such
duplicates. We used the technique proposed by Webster et al. [133], where CLIP image features are
first compressed and then used to do an approximate nearest neighbor search. After this process,
two images x and y are considered duplicates if |dADC(x,x)−dADC(x,y)|dADC(x,x)

< TADC , where TADC is some
threshold and dADC(x, x) is the distance of a vector with its quantized version used for approximate
nearest neighbor search. For each image, we search duplicates across its 1000 nearest neighbors,
and keep it if it’s the one with the highest CLIP ViT-L/14 similarity score across its duplicates.
Results can be seen in Table 10, both when this technique is used by itself and in conjunction with
ViT-B/32 filtering. We can see that the there are small improvements over using CLIP filtering by
itself with respect to the average performance across evaluation datasets.

8https://github.com/webdataset/webdataset
9Since in DataComp, the number of examples seen is equal to the pool size.
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Table 10: Effect of deduplication of training set for the medium size CommonPool. The filtering
performed here is CLIP B32 score top 30% (see Table 22). Higher threshold values lead to more
samples being labeled as duplicates.

Subset Training dataset size ImageNet accuracy Average performance
TADC = 0.1, without filtering 99.8M 0.195 0.272
TADC = 0.2, without filtering 85.9M 0.200 0.274
TADC = 0.5, without filtering 29.6M 0.227 0.292
TADC = 0.1, with filtering 33.5M 0.288 0.333
TADC = 0.2, with filtering 30.6M 0.289 0.333
TADC = 0.5, with filtering 15.5M 0.252 0.307
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Figure 15: (left) The effect of training for 10× steps for for small filtering track baselines on ImageNet.
(right) Similar plot but for Avg. performance. While the ordering of some methods changes quite
drastically, we, in general, see a positive correlation.

L Training with additional steps

Recall that one of our major design decisions for DataComp is to fix the hyperparameters associated
with model training, following closely hyperparameters from prior work [102]. We choose to
fix hyperparameters to place emphasis on data curation and remove confounders arising from
hyperparameter differences between participants. Here we ablate our hyperparameter configuration
by training small baselines for 10× more steps. In Figure 15 we see positive correlation for ImageNet
accuracy for the ablated and original hyperparameter configurations. We see similar correlation for
average performance. See Table 11 for specific values.
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Table 11: Experiment details when extending the number of steps by 10 times the standard amount
for that scale.

Scale Filtering ImageNet
ImageNet

VTAB Retrieval
Average over

dist. shifts 38 datasets
No filtering 0.102 0.093 0.204 0.125 0.194
Random subset(75%) 0.078 0.072 0.182 0.109 0.177
Random subset(50%) 0.045 0.049 0.161 0.096 0.149
Random subset(25%) 0.023 0.029 0.134 0.071 0.119
Random subset(10%) 0.010 0.018 0.119 0.067 0.101
Random subset(1%) 0.002 0.006 0.097 0.055 0.082
Caption length 0.085 0.080 0.198 0.116 0.183
Image size 0.066 0.064 0.153 0.101 0.157
English (fasttext) 0.068 0.068 0.172 0.095 0.158
English (fasttext) and caption length 0.066 0.065 0.182 0.095 0.162
English (fasttext), caption length, and image size 0.045 0.048 0.164 0.084 0.148
CLIP B32 score top 10% 0.035 0.046 0.162 0.072 0.139
CLIP B32 score top 20% 0.076 0.076 0.182 0.088 0.171
CLIP B32 score top 30% 0.096 0.090 0.221 0.104 0.204
CLIP B32 score top 40% 0.081 0.077 0.200 0.107 0.191
CLIP B32 score top 50% 0.106 0.097 0.211 0.113 0.203
CLIP B32 score top 75% 0.103 0.096 0.210 0.126 0.196
CLIP B32 score top 90% 0.105 0.096 0.212 0.127 0.200
CLIP B32 threshold at 0.3 + English filter 0.029 0.036 0.152 0.071 0.133
CLIP B32 threshold at 0.28 + English filter 0.035 0.041 0.168 0.080 0.145
CLIP B32 threshold at 0.3 0.076 0.078 0.199 0.089 0.181
CLIP L14 score top 10% 0.026 0.037 0.130 0.069 0.123
CLIP L14 score top 20% 0.060 0.064 0.161 0.085 0.152
CLIP L14 score top 30% 0.088 0.087 0.199 0.098 0.187
CLIP L14 score top 40% 0.100 0.096 0.217 0.103 0.206
CLIP L14 score top 50% 0.104 0.098 0.212 0.114 0.201
CLIP L14 score top 75% 0.103 0.095 0.189 0.121 0.190
CLIP L14 score top 90% 0.105 0.095 0.203 0.123 0.196
Image-based clustering (ImageNet1k) 0.053 0.053 0.162 0.082 0.145
Image-based clustering (ImageNet21k) 0.063 0.059 0.173 0.094 0.166
Text-based clustering (ImageNet1k) 0.012 0.018 0.120 0.060 0.104
Text-based clustering (ImageNet21k) 0.060 0.064 0.170 0.090 0.159
Intersect IN1k image clustering and CLIP B32 score top 30% 0.058 0.059 0.179 0.089 0.160
Intersect IN1k image clustering and CLIP L14 score top 30% 0.049 0.051 0.171 0.083 0.149
Intersect IN21k image clustering and CLIP B32 score top 30% 0.071 0.070 0.192 0.092 0.174

small

Intersect IN21k image clustering and CLIP L14 score top 30% 0.064 0.065 0.200 0.085 0.172
No filtering 0.370 0.304 0.387 0.259 0.376
English (fasttext), caption length, and image size 0.317 0.269 0.324 0.194 0.328
CLIP B32 score top 30% 0.436 0.351 0.433 0.245 0.422
CLIP B32 score top 40% 0.434 0.353 0.448 0.263 0.434
CLIP B32 score top 50% 0.426 0.352 0.439 0.273 0.425
CLIP B32 score top 75% 0.398 0.325 0.396 0.271 0.402
Image-based clustering (ImageNet1k) 0.363 0.294 0.347 0.197 0.341
Image-based clustering (ImageNet21k) 0.374 0.303 0.372 0.224 0.364
Intersect IN1k image clustering and CLIP B32 score top 30% 0.415 0.330 0.413 0.218 0.396

medium

Intersect IN1k image clustering and CLIP L14 score top 30% 0.405 0.325 0.399 0.206 0.380
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M Training details

The full set of hyperparameters used for each scale is shown in Table 12. For choosing hyperparameters,
we follow the OpenCLIP library [61], an open source reproduction of OpenAI’s CLIP. For the small,
medium, and large tracks, these hyperparameters are equal to those in the CLIP paper, except with
reduced batch size so that training runs on reasonable hardware. For the xlarge track, batch size is
increased from that in OpenAI’s CLIP to accelerate training by allowing the use of many GPUs
simultaneously with high utilization. For this run we also double the learning rate following prior
work [23].

N Evaluation details

Models are evaluated over a wide range of 38 tasks to measure proficiency in various domains.
We include 22 of the 27 classification tasks in the test suite of Radford et al. [102], excluding the
few datasets that have license restrictions, are in video format, or are no longer available in their
original form. We include 6 datasets that were designed to test generalization of models trained
on ImageNet. We also include a majority of the Visual Task Adaptation Benchmark, excluding 3
datasets that are ill-suited for zero-shot evaluation [144]. We include 3 datasets from the WILDS
benchmark, which tests robustness to distribution shifts and spurious correlations [75, 118]. Finally,
we include 2 additional datasets, Dollar Street and GeoDE, which test robustness of classification
performance across income levels and geographical regions [113, 105]. Furthermore, we evaluate
zero-shot image and text retrieval on the Flickr30k and MSCOCO datasets, and image association
on the WinoGAViL dataset [139, 21, 12]. The complete list of evaluation tasks is given in Table 13.
We show a sample from each dataset in Figure 16.

Prompt choice. Since we perform zero-shot evaluation, prompt and class name selection is
important, and can have a significant impact on the results. To avoid heavy prompt engineering
and overtuning to individual models, we opt to use the prompt templates used in Radford et al.
[102] whenever possible. Most datasets come with pre-defined class names, but some are overwritten
with more descriptive labels, again based on previous literature. For datasets with no precedent in
zero-shot evaluation, we reuse prompt templates from other datasets with a similar domain and task
(e.g., SVHN is evaluated with MNIST prompts and class names).

Evaluation metrics. For the majority of classification tasks, the primary evaluation metric is
accuracy. For certain datasets with class imbalances, we instead compute mean per-class accuracy,
as done in Radford et al. [102]. On the WILDS benchmark datasets, we use the primary metric
specified for each dataset on their leaderboard. Dollar Street and GeoDE test model generalization
across socioeconomic and geographic diversity. Thus, for Dollar Street, we compute worst-group

Table 12: Experimental configuration for each scale, including the size of the pool we provide, the
model architecture and hyperparameters.
Scale Model Train compute (MACs) Pool size # samples seen Learning rate AdamW β2 Warmup Batch size
small ViT-B/32 9.5× 1016 12.8M 12.8M 5e-4 0.98 500 4096
medium ViT-B/32 9.5× 1017 128M 128M 5e-4 0.98 500 4096
large ViT-B/16 2.6× 1019 1.28B 1.28B 5e-4 0.98 500 8192
xlarge ViT-L/14 1.1× 1021 12.8B 12.8B 1e-3 0.95 10k 90112
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CIFAR-10 CIFAR-100 CLEVR Counts CLEVR Dist. Caltech-101

Camelyon17 Country211 DTD Dollar Street EuroSAT

FGVC Aircraft FMoW FairFace Flickr Flowers-102

Food-101 GTSRB GeoDE ImageNet 1k ImageNet Sketch

ImageNet v2 ImageNet-A ImageNet-O ImageNet-R KITTI

MNIST MSCOCO ObjectNet Oxford-IIIT Pet Pascal VOC

PatchCamelyon RESISC45 SST2 STL-10 SUN397

SVHN Stanford Cars UTKFace WinoGAViL iWildCam

Figure 16: Randomly sampled images from the evaluation datasets we consider.
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Table 13: Evaluation tasks.
Task type Dataset Task Test set size Number of classes Main metric Clean

Caltech-101 [40] Object recognition 6,085 102 mean per class X
CIFAR-10 [78] Visual recognition 10,000 10 accuracy X
CIFAR-100 [78] Visual recognition 10,000 100 accuracy X
CLEVR Counts [67, 144] Counting 15,000 8 accuracy
CLEVR Distance [67, 144] Distance prediction 15,000 6 accuracy
Country211 [102, 129] Geolocation 21,100 211 accuracy X
DTD [25] Texture classification 1,880 47 accuracy X
EuroSAT [56, 144] Satellite imagery recognition 5,400 10 accuracy X
FGVC Aircraft [87] Aircraft recognition 3,333 100 mean per class X
Food-101 [13] Food recognition 25,250 101 accuracy X
GTSRB [126] Traffic sign recognition 12,630 43 accuracy X
ImageNet 1k [32] Visual recognition 50,000 1,000 accuracy X
ImageNet Sketch [132] Visual recognition 50,889 1,000 accuracy X
ImageNet V2 [112] Visual recognition 10,000 1,000 accuracy X
ImageNet-A [58] Visual recognition 7,500 200 accuracy X
ImageNet-O [58] Visual recognition 2,000 200 accuracy X
ImageNet-R [57] Visual recognition 30,000 200 accuracy X
KITTI distance [43, 144] Distance prediction 711 4 accuracy
MNIST [81] Digit recognition 10,000 10 accuracy X
ObjectNet [9] Visual recognition 18,574 113 accuracy X
Oxford Flowers-102 [94] Flower recognition 6,149 102 mean per class X
Oxford-IIIT Pet [97, 144] Pet classification 3,669 37 mean per class X
Pascal VOC 2007 [37] Object recognition 14,976 20 accuracy X
PatchCamelyon [131, 144] Metastatic tissue cls. 32,768 2 accuracy
Rendered SST2 [144] Sentiment classification 1,821 2 accuracy X
RESISC45 [22, 144] Satellite imagery recognition 6,300 45 accuracy X
Stanford Cars [77] Vehicle recognition 8,041 196 accuracy X
STL-10 [26] Visual recognition 8,000 10 accuracy X
SUN-397 [135] Scene recognition 108,754 397 accuracy X
SVHN [91, 144] Digit recognition 26032 10 accuracy X
iWildCam [10, 75] Animal recognition 42,791 182 macro F1 score X
Camelyon17 [8, 75] Metastatic tissue cls. 85,054 2 accuracy
FMoW [24, 75] Satellite imagery recognition 22,108 62 worst-region acc. X
Dollar Street [113] Object recognition 3,503 58 worst-income top-5 acc. X

Classification

GeoDE [105] Object recognition 12,488 40 worst-region acc. X

Flickr30k [139] Image and text retrieval 31,014 N/A R@1 X
MSCOCO [21] Image and text retrieval 5,000 N/A R@1 XRetrieval
WinoGAViL [12] Commonsense association 3,563 N/A Jaccard score X

top-5 accuracy, with groups defined by income level, emulating Rojas et al. [113]; for GeoDE, we
compute worst-group accuracy, with groups defined by region (Africa, Americas, West Asia, East
Asia, Southeast Asia, and Europe), as defined in Ramaswamy et al. [105]. For the image-text
retrieval tasks, Flickr and MSCOCO, we compute both image and text recall (fraction of text
captions for which the correct image was selected and vice versa), and plot their arithmetic mean.
On WinoGAViL, we compute the Jaccard score (intersection-over-union) for each example, and show
results for the harder samples (10 and 12 candidates). More information on WinoGAViL evaluation
can be found in Bitton et al. [12].

Clean subset. For five of our evaluation tasks (the two CLEVR tasks, the two Camelyon tasks,
and KITTI) the zero-shot performance of all evaluated models appears to be close to that of random
guessing, and lack correlation to the type of filtering method used (see Figure 27). Consequently, we
studied performance averaged only on the remaining 33 tasks, but found not substantial qualitative
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Figure 17: Zero-shot ImageNet and Linear probe ImageNet performance for models from Tables 3 and
4. Relative ordering of models demonstrates high rank correlations of 0.99 and 1.0 for CommonPool
and BYOD respectively.

differences in our results. As a result, we opted to report the average on the full evaluation suite
throughout our study.

Zero-shot vs. fine-tuning protocols. One critical decision in DataComp is how exactly to
evaluate models and whether or not to fine-tune models on evaluation tasks (i.e., supervised fine-
tuning directly on task training sets). We opt for zero-shot evaluation, where a models are applied
to downstream tasks directly to 1) ease computational burden on participants and 2) measure the
out-of-the-box generalization capabilities of our models. To validate this design decision, we conduct
linear probes on all models presented in Tables 3 and 4 on ImageNet. We follow a standard probing
protocol and fine-tune the last linear layer from zero-shot initialization for 40 epochs with learning
rate 1e-3, batch size 256, AdamW optimizer with default settings with the exception of weight
decay (that we set to zero), and a cosine annealing schedule. As seen in Figure 17, zero-shot and
linear probe performance follow similar trends for both filtering and BYOD tracks. Moreover the
Spearman rank correlation between the two protocols over the models considered is 0.99 for the
filtering track and 1.0 for BYOD. This suggests that better zero-shot models on ImageNet are
correlated with better representations of linear probe fine-tuning on ImageNet.

O Baseline details

Here we provide additional details on the creation of our baseline subsets. To highlight the qualitative
differences between the filtering strategies we also provide visualization for No filtering (Figure 18),
Basic filtering (Figure 19), and CLIP score (L/14 30%) (Figure 20), which can all be found in
Table 3. Notice that No filtering gives relatively noisy data (e.g., matching a bicycle with a caption:
“IMG_2187.jpg”), while CLIP score samples give qualitatively more descriptive cations.
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Figure 18: An i.i.d. sample from small CommonPool generated after applying the No filter
strategy. Hence, these samples represent random images from CommonPool.
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Figure 19: An i.i.d. sample from small CommonPool generated after applying the Basic filter
strategy.
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Figure 20: An i.i.d. sample from small CommonPool generated after applying the CLIP score
(L/14 30%)

strategy.
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O.1 Filtering track

Basic filtering. For language detection, we use Fasttext 0.92, version lid.176, and cld3 - library
gcld3 3.0.13. We count the number of words in each caption by splitting using whitespaces.

CLIP thresholds. We use OpenAI pretrained CLIP ViT-B/32 and ViT-L/14 models [102] to
compute the cosine similarity text and image tower outputs as the CLIP scores. On the small and
medium pools, we also experiment with baselines that filter out samples in the top few percentiles
of CLIP scores. Specifically, we try baselines that use samples with top {1,2,5}-30% CLIP scores
(ViT-B/32 model), and the performance is sightly better on the small pool (at most 0.5 gain of
averaged accuracy) while slightly worse on the medium pool (0.4-0.8 loss of averaged accuracy). In
Table 14, we show how the CLIP score thresholds relate to the fraction of the pool retained by the
filter.

Text-based filtering. Each synset is represented by a synset offset that can be used to retrieve the
synset from WordNet. In order to verify if a caption has a word corresponding to a synset from our
set we iterate over every word and retrieve the synsets that this word can describe (using nltk.corpus
WordNet). Following that, we retrieve the most likely lemma representing that synset, find its synset
offset, and check if the number is part of the IN21K or IN1K sets.10

Text-based sampling. This baseline uses text only to filter labels which mention concepts (synsets)
appearing in IN21K, and applies a temperature parameter to control how equally-represented different
concepts are in the dataset. For synset j, let Nj be the number of examples containing words matched
to that synset, where as before for each word we only match the most likely synset. Furthermore,
for image-text pair i let Ti be the set of synset matched to the caption.

The probability of sampling example i is proportional to either 1
|Ti|

∑
j∈Ti N

α−1
j (average synset

score in the data point) or maxj∈Ti N
α−1
j (maximum synset score in the data point), where α is

a “temperature” parameter controlling the flatness of the distribution. We sample examples with
replacement but discard any example repeated more than 100 times.

Image-based filtering. We now provide a detailed description of the Image-based filtering procedure.
First, since the core of the procedure concerns only image content, we begin with basic text-bsaed
filtering: we remove from the pool only all examples with non-English captions (as determined by
fasttext), and all examples whose captions have less than two words or less than six characters.

Next, we use clustering of image embeddings to select a subset of examples whose image content is
related to a clean training set of interest. Let e1, . . . , eM denote the CLIP image embeddings of the
remaining examples in the pool. We cluster these embeddings into K = 105 clusters using Faiss with
20 iterations, and let c1, . . . , cK denote the resulting cluster centers. Due to memory constraints, for
the large and xlarge pools, we perform the clustering on a random subset of about 160M examples
(that pass the basic text-based filtering). For an embedding vector v, let

I(v) = argmax
i≤K
〈v, ci〉

denote the index of the cluster center nearest to v as measured by inner product. Let f1, . . . , fN
denote the CLIP image embeddings of a clean supervised training set (we experiment with either

10For the ImageNet 21K synsets, we have used the list in https://storage.googleapis.com/bit_models/
imagenet21k_wordnet_ids.txt
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Table 14: CLIP threshold filtering configurations. “Fraction” denotes the size of the filtered subset
relative to the pool.

CLIP model En. filtering Threshold Fraction
ViT-B/32 7 0.384 1%
ViT-B/32 7 0.358 3%
ViT-B/32 3 0.300 10.2%
ViT-B/32 7 0.325 10%
ViT-B/32 3 0.28 7.4%
ViT-B/32 7 0.300 20%
ViT-B/32 7 0.281 30%
ViT-B/32 7 0.263 40%
ViT-B/32 7 0.247 50%
ViT-B/32 7 0.215 75%
ViT-B/32 7 0.193 90%
ViT-L/14 7 0.364 1%
ViT-L/14 7 0.334 3%
ViT-L/14 3 0.300 5.4%
ViT-L/14 7 0.295 10%
ViT-L/14 3 0.280 3.3%
ViT-L/14 7 0.266 20%
ViT-L/14 7 0.243 30%
ViT-L/14 7 0.222 40%
ViT-L/14 7 0.203 50%
ViT-L/14 7 0.160 75%
ViT-L/14 7 0.129 90%

ImageNet 1K or ImageNet 21K), and let

S = {I(fi) | 1 ≤ i ≤ N}

be the set of cluster indices who are nearest neighbors to some clean training set image. We then
keep only images in the pool whose nearest cluster center is in S. That is, out of the M examples
passing the text-based filtering, the output subset keeps the examples with indices

{1 ≤ j ≤M | I(ej) ∈ S}.

Image-based sampling. In addition to filtering methods, we experiment with cluster-based
sampling methods. First, we compute the score of i-th cluster si as the number of ImageNet
data assigned to this cluster. Then, for parameter α > 0 we define a distribution over the pool
by sampling cluster i with probability sαi∑

j s
α
j
and uniformly sampling an example for the cluster,

rejecting any example repeated more than 100 times. We try 5 different α, i.e., {0, 0.2, 0.5, 1.0, 2.0},
and the best average accuracy is obtained when α = 0.2, while the performance is still worse than
the image-based filtering on the small and medium pool. We therefore do not include this line of
baselines in the experiments of large pool.

ImageNet distance filtering. We rank the samples in the pool by the minimum embedding
distance (1 minus cosine similarity) between its image and the ImageNet images; both embeddings
are obtained from OpenAI pretrained CLIP ViT-L/14 model [102]. Then we select top images by
different fractions as in image-based filtering methods.
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Table 15: Measuring the quality of external data sources

Dataset Dataset size ImageNet acc.
Avg. accuracy

Avg. cos. sim. (B/32) Avg. cos. sim. (L/14)
ImageNet and OOD sets

CC12M 10M 27.8 34.0 0.306 0.268
YFCC15M 15M 22.6 24.6 0.262 0.198
RedCaps 11M 26.8 31.5 0.281 0.240
Shutterstock 15M 21.0 28.3 0.314 0.273

O.2 BYOD track

We experiment with the following data sources:

• CC12M [19]: images and HTML alt-text crawled and filtered from web pages.

• YFCC15M: this is the 15M subset of the YFCC100M dataset [129] that Radford et al. [102] used
for dataset ablation in their CLIP paper.

• RedCaps [33]: 12M images and corresponding captions were crawled from 350 manually curated
subreddits between 2008 and 2020.

• Shutterstock: 106M images and captions were obtained from the Shutterstock website in 2021 [93].
We use the “photos” subset of this dataset, with 58M samples, which we found performed best,
unless specified otherwise.

• WIT [125]: Image-text pairs from Wikipedia pages. We use the attribution fields as captions, which
we found performed best.

• COYO [15]: A collection of 700M image-text pairs from Common Crawl.

• LAION-2B [120]: A 2.32 billion english subset of LAION-5B.

• LAION-COCO: A dataset with 600M images from LAION-5B and synthetic captions.11

• LAION-A: According to laion.ai, LAION-A is a 900M subset of LAION-2B [120] with the aesthetic
filtering procedure used in LAION-aesthetic12 and pHash deduplication [63].

In Table 15, we use some heuristics to measure the quality of the external data sources. First,
following Nguyen et al. [93], we train a CLIP model on a 5M random subset from each source, and
evaluate the performance of the resulting models on ImageNet and ImageNet-derived distributions —
ImageNet-V2 [112], ImageNet-R [57], ImageNet-Sketch [132] and ObjectNet [9]. Moreover, for each
data source, we use OpenAI’s pretrained CLIP ViT-B/32 and ViT-L/14 models to compute the
cosine similarity between image and text embeddings of a data point, and obtain the average cosine
similarity score for the whole dataset.

O.2.1 Additional results

We present a series of additional results for the BYOD track in Table 16.
11https://laion.ai/blog/laion-coco/
12https://github.com/LAION-AI/laion-datasets/blob/main/laion-aesthetic.md
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Table 16: Zero-shot performance for select baselines in the BYOD track. Unless specified otherwise,
CommonPool means our pool filtered with CLIP score (L/14, 30%).

Scale Data source
Training

ImageNet
ImageNet

VTAB Retrieval
Average over

dataset size dist. shifts 38 datasets
#0 CC12M 0.099 0.080 0.223 0.160 0.202
#1 LAION15M 0.083 0.076 0.210 0.119 0.187
#2 RedCaps 0.076 0.066 0.177 0.127 0.167
#3 Shutterstock 15M 0.083 0.070 0.214 0.128 0.183
#4 YFCC15M 0.071 0.046 0.182 0.120 0.162
#5 #0 + #1 + #2 0.097 0.084 0.208 0.131 0.192
#6 #0 + #1 + #3 0.091 0.081 0.222 0.138 0.202
#7 #0 + #2 + #3 + #4 0.095 0.075 0.205 0.135 0.184

small

#8 #0–4 0.093 0.076 0.205 0.135 0.191
#9 CC12M 0.245 0.189 0.283 0.206 0.266
#10 LAION15M 0.270 0.215 0.317 0.181 0.300
#11 RedCaps 0.237 0.166 0.271 0.150 0.261
#12 Shutterstock 15M 0.229 0.191 0.316 0.190 0.284
#13 YFCC15M 0.232 0.137 0.263 0.174 0.251
#14 #9 + #10 + #11 0.376 0.287 0.387 0.227 0.358
#15 #9 + #10 + #12 0.342 0.278 0.362 0.242 0.349
#16 #9 + #11 + #12 + #13 0.360 0.268 0.365 0.190 0.338
#17 #9–13 0.371 0.285 0.408 0.194 0.361
#18 Shutterstock illustration 0.053 0.094 0.205 0.112 0.179
#19 Shutterstock photo 0.342 0.209 0.364 0.248 0.323
#20 Shutterstock vectors 0.072 0.151 0.216 0.129 0.206
#21 Shutterstock full 0.313 0.254 0.353 0.240 0.335
#22 WIT full 0.096 0.063 0.196 0.088 0.175
#23 WIT English 0.051 0.038 0.145 0.073 0.142
#24 COYO 0.272 0.235 0.333 0.249 0.314

medium

#25 LAION-COCO 0.209 0.205 0.293 0.243 0.288
#26 Shutterstock illustration 0.337 0.203 0.307 0.223 0.298
#27 Shutterstock photo 0.485 0.304 0.432 0.311 0.389
#28 Shutterstock vectors 0.126 0.223 0.244 0.152 0.243
#29 Shutterstock full 0.500 0.412 0.472 0.335 0.447
#30 COYO 0.615 0.504 0.529 0.332 0.522
#31 LAION-COCO 0.355 0.351 0.395 0.366 0.388
#32 COYO + LAION-COCO 0.528 0.458 0.479 0.466 0.488
#33 LAION-A 0.611 0.474 0.501 0.414 0.495
#34 CommonPool + #9–13 0.602 0.498 0.541 0.284 0.527
#35 CommonPool + #9–13 (2x upsampled) 0.613 0.507 0.559 0.293 0.532
#36 CommonPool + #9–13 (4x upsampled) 0.615 0.514 0.553 0.295 0.533
#37 CommonPool + #9–13 (6x upsampled) 0.620 0.519 0.558 0.301 0.538
#38 CommonPool + #9–13 (8x upsampled) 0.624 0.520 0.533 0.302 0.526
#39 CommonPool + #9–13 (10x upsampled) 0.621 0.520 0.540 0.303 0.527
#40 CommonPool + COYO 0.561 0.472 0.504 0.375 0.503
#41 CommonPool + LAION-A 0.607 0.480 0.531 0.386 0.517
#42 CommonPool + LAION-COCO 0.522 0.457 0.513 0.374 0.504
#43 CommonPool + #11+#13+#19 0.609 0.508 0.546 0.303 0.525
#44 CommonPool + #11+#13+#19 (2x upsampled) 0.621 0.509 0.547 0.315 0.530
#45 CommonPool + #11+#13+#19 (4x upsampled) 0.632 0.515 0.533 0.316 0.522
#46 CommonPool + #11+#13+#19 (6x upsampled) 0.635 0.515 0.535 0.329 0.521
#47 CommonPool + #11+#13+#19 (8x upsampled) 0.633 0.515 0.523 0.328 0.520

large

#48 CommonPool + #11+#13+#19 (10x upsampled) 0.630 0.513 0.523 0.317 0.510
#49 CommonPool + #11+#13+#19 0.766 0.660 0.662 0.394 0.648
#50 CommonPool + #11+#13+#19 (6x upsampled) 0.776 0.671 0.633 0.410 0.638xlarge
#51 CommonPool + #11+#13+#19 (18x upsampled) 0.771 0.667 0.629 0.418 0.633
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Figure 21: Comparison of average and worst-group scores for Dollar Street and GeoDE diversity
datasets. On Dollar Street, our overall higher-performing models display a larger worst-group
performance gap (corresponding to lower income households). GeoDE does not appear to show this
trend.

P Fairness and biases

To study the biases displayed by our models, we include two diversity-related datasets, Dollar Street
[113] and GeoDE [105], in our evaluation suite, and perform further analysis on the face datasets
FairFace [71] and UTKFace [147] with demographic labels, following Radford et al. [102].

P.1 Diversity

We break down model performance on the Dollar Street and GeoDE datasets in Figure 21. Dollar
Street consists of images of household items taken in homes around the world, and represents a
wide socioeconomic range that includes homes with no Internet access [113]. The objects belong to
ImageNet categories, and the task is image classification. Standard ImageNet-trained models achieve
monotonically increasing performance levels with higher household income levels [113]. Here we
use the income-based subgroups defined in Rojas et al. [113], and find a similar bias as discovered
in their paper. While our trained models show a smaller worst-group performance gap than an
ImageNet-trained ResNet-50, they underperform a model fine-tuned on Dollar Street. Models with
higher average accuracy show a larger worst-group gap, which future work should try to address.

GeoDE consists of images of everyday items and objects, which again fall into ImageNet categories.
The dataset represents six world regions equally, and primarily aims to promote geographic diversity of
datasets [105]. Both ImageNet models and our models show less bias under this distribution compared
to Dollar Street, with a smaller worst-group accuracy gap. The trends show that performance across
all regions improves steadily with increased scale, and the performance approaches that of a model
fine-tuned on GeoDE. While we know that classifiers trained specifically on ImageNet can display
geographic biases [105], these biases are not apparent in our GeoDE model evaluations. Future work
is needed to investigate the extent to which our models have geographic biases not evaluated in

60



GeoDE.

P.2 Fairness

Emulating Radford et al. [102], we evaluate our best models from the filtering and BYOD track
baselines on the human face datasets FairFace and UTKFace, using zero-shot classification to predict
race, gender, and age. Note that these are not intended end-goals of the model or benchmark,
but rather probes into models behave differently across demographic subgroups. As described in
Appendix G, our filleting track models are trained on images with faces blurred. Nevertheless, these
models still perform significantly above random chance on face classification. We hypothesize that
this is due to a combination of faces bypassing our face blurring filter in the training data, contextual
clues outside of the face region, or signal associated with skin color. The BYOD track model performs
even better than the Filtering track model. We hypothesize that this is because BYOD data is used
off-the-shelf and hence contains non-blurred faces. In Table 17, we present overall accuracy for these
three traits. Note that race is treated as a binary variable (white or non-white) to enable comparison
to prior results; gender is a binary variable (male or female) according to annotations; and age is
binned into 9 ranges according to the annotation precision of FairFace. The BYOD model, performs
better at distinguishing gender, but is worse at distinguishing race and age.

We further break down these statistics over the intersection of race and gender, examining gender
classification accuracies in Table 18. We find that there are drastic differences in accuracy across
different subgroups, varying by both race and gender. The filtering models shows a tendency to
misclassify Black, Southeast Asian, and East Asian males as females at 20.7%, 17%, and 19.3%
respectively on FairFace. Furthermore, we find that while the BYOD model improves accuracy, in
FairFace most of this improvement is on men (ranging from 1.7pp gain to 9.9pp gain), while on
women, it offers little change (ranging from 0.6pp gain to 6.2pp drop).

Following Radford et al. [102], we also examined associations of particular demographics with
potentially harmful language. We replicate their setup with two classification task: (1) including
race-gender intersection classes (e.g. “black woman”, “indian man”, etc.), as well as several harmful
crime-related terms (“thief”, “criminal”, “suspicious person”) and (2) out same race-gender intersection
classes as well as non-human terms (“animal”, “gorilla”, “chimpanzee”, “orangutan”). We compute the
frequency of misclassification of people into one of the harmful categories and run these experiments
on FairFace and UTKFace separately. The results are shown in Table 19. Unlike in Radford et al.
[102], we find that our models have a very small probability of classifying human faces as non-human,
with a max score across all subgroups of 0.1%. However, a significant proportion of people are
misclassified as criminal. The model is better at classifying race and gender, but also more susceptible
to assigning unfounded associations with images. This again highlights the importance of dataset
curation and the risks associated with zero-shot classification on models trained on such web-scraped
datasets.
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Table 17: Overall race, gender, and age classification accuracy of our two best xlarge baselines,
Image-based ∩ CLIP score (L/14 30%) for the filtering track and CommonPool, CLIP score +
4 external sources (upsampled 6x) for the BYOD track. Race classification was binary (white or
non-white) as in Karkkainen & Joo [71].

Dataset Track Race Gender Age
Filtering 86.4 91.7 34.3

FairFace
BYOD 76.5 93.9 33.8
Filtering 86.2 93.8 39.5

UTKFace
BYOD 86.1 95.5 38.6

Table 18: Gender classification accuracy of our two best xlarge baselines, Image-based ∩ CLIP score
(L/14 30%) for the filtering track and CommonPool, CLIP score + 4 external sources (upsampled
6x) for the BYOD track.

FairFace

Track Gender
Race

Black White Indian Latino/Hispanic Middle Eastern Southeast Asian East Asian
Male 79.3 91.3 90.8 90.4 95.7 83.0 80.7

Filtering
Female 95.4 96.6 94.2 96.6 96.5 97.2 98.2
Male 89.2 94.8 93.2 93.4 97.4 90.2 90.6

BYOD
Female 89.2 96.0 94.2 96.0 96.2 97.1 97.0

UTKFace

Track Gender
Race

Black White Indian Asian Other
Male 95.4 92.5 91.7 73.1 84.2

Filtering
Female 97.3 98.7 97.4 98.3 97.4
Male 96.8 95.9 94.7 85.7 90.4

BYOD
Female 96.3 97.7 96.8 95.9 95.6

Table 19: Harmful misclassification rates of our two best xlarge baselines, Image-based ∩ CLIP score
(L/14 30%) for the filtering track and CommonPool, CLIP score + 4 external sources (upsampled
6x) for the BYOD track. While very few samples are misclassified as non-human, the filter track
model assigns a crime-related label to a significant portion of people, and this is exacerbated by the
BYOD model in many cases.

FairFace
Track Race

Black White Indian Latino/Hispanic Middle Eastern Southeast Asian East Asian
Crime-related 4.4 24.3 8.8 14.3 23.7 7.4 8.6Filtering Non-human 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Crime-related 18.4 16.8 21.5 22.9 20.9 35.3 30.9BYOD Non-human 0.0 0.1 0.0 0.1 0.0 0.1 0.1

UTKFace

Track
Race

Black White Indian Asian Other
Crime-related 6.8 16.1 9.1 6.9 13.9

Filtering
Non-human 0.0 0.2 0.0 0.1 0.0
Crime-related 12.8 10.8 15.2 13.2 18.6

BYOD
Non-human 0.0 0.2 0.0 0.0 0.0
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Table 20: Rank correlation between the performance obtained with various filtering strategies at two
different scales. Our experimental suggest that the ranking is relatively consistent between scales,
especially for the adjacent scale pairs.

Metric small vs medium small vs large medium vs large
ImageNet acc. 0.901 0.830 0.863
Average pref. metric 0.862 0.738 0.889
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Figure 22: Improving downstream performance at smaller scales correlates positively with performance
gains at larger scales. These trends suggests that dataset filtering can be studied effectively at
smaller scales, even with less computational resources.
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Figure 23: Performance as a function of the number of training samples from the small (top) and
large (bottom) scales. There is a significant variance in accuracy even when accounting for the size
of the training set.
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Figure 24: We examine the percentage of texts classified as English after taking the top fraction (on
the x-axis) of the large billion pool as sorted by CLIP similarity score. We see that doing CLIP
filtering implicitly does some English filtering, as image-text pairs with a higher CLIP score are
more frequently classified as English.
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Figure 25: Correlation between ImageNet accuracy and average performance on our suite of evaluation
tasks. While ImageNet accuracy strongly correlates with the average performance (both on the
clean subset and the full suite), the same is not true for all individual datasets we study, as shown in
Appendix Q.
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Figure 27: Zero-shot performance on other datasets is often positively correlated with that on
ImageNet, but not always. In cases where ImageNet shows close to zero correlation with other
datasets, performance on that dataset is often close to random chance.



Table 21: Baseline results for the filtering track, small scale.

Filtering Training ImageNet ImageNet VTAB Retrieval Average over
dataset size dist. shifts 38 datasets

No filtering 12.8M 0.025 0.033 0.145 0.105 0.132
Random subset (75%) 9.6M 0.028 0.037 0.153 0.102 0.140
Random subset (50%) 6.4M 0.027 0.037 0.147 0.105 0.136
Random subset (25%) 3.2M 0.022 0.032 0.130 0.094 0.126
Random subset (10%) 1.3M 0.010 0.018 0.116 0.075 0.102
Random subset (1%) 128K 0.002 0.005 0.095 0.049 0.078
Caption length 8.7M 0.034 0.040 0.148 0.109 0.143
Image size 7.8M 0.027 0.036 0.154 0.111 0.137
English (fasttext) 6.3M 0.038 0.045 0.164 0.113 0.153
English (fasttext) and caption length 4.8M 0.041 0.048 0.159 0.111 0.153
English (fasttext), caption length, and image size 3.0M 0.030 0.040 0.149 0.111 0.137
English (cld3) 2.6M 0.032 0.039 0.143 0.100 0.141
English (cld3) and caption length 2.3M 0.031 0.038 0.153 0.103 0.142
English (cld3), caption length, and image size 1.5M 0.023 0.030 0.154 0.087 0.140
CLIP B32 score top 1% 129K 0.003 0.007 0.114 0.049 0.086
CLIP B32 score top 3% 384K 0.006 0.014 0.104 0.054 0.089
CLIP B32 score top 10% 1.3M 0.026 0.035 0.147 0.072 0.127
CLIP B32 score top 20% 2.6M 0.051 0.056 0.173 0.103 0.160
CLIP B32 score top 30% 3.8M 0.045 0.052 0.180 0.103 0.159
CLIP B32 score top 40% 5.1M 0.052 0.057 0.173 0.109 0.166
CLIP B32 score top 50% 6.4M 0.047 0.053 0.174 0.114 0.164
CLIP B32 score top 75% 9.6M 0.033 0.043 0.161 0.110 0.150
CLIP B32 score top 90% 11.5M 0.028 0.039 0.140 0.108 0.136
CLIP B32 threshold at 0.3 + English filter 942K 0.022 0.032 0.138 0.073 0.121
CLIP B32 threshold at 0.28 + English filter 1.3M 0.031 0.040 0.136 0.085 0.133
CLIP B32 threshold at 0.3 2.6M 0.052 0.056 0.166 0.102 0.160
CLIP B32 score 1% to 30% 3.7M 0.053 0.058 0.185 0.102 0.170
CLIP B32 score 2% to 30% 3.6M 0.056 0.059 0.173 0.108 0.160
CLIP B32 score 5% to 30% 3.2M 0.052 0.055 0.177 0.104 0.168
CLIP L14 score top 1% 128K 0.002 0.007 0.111 0.049 0.080
CLIP L14 score top 3% 386K 0.004 0.009 0.110 0.052 0.088
CLIP L14 score top 10% 1.3M 0.021 0.033 0.131 0.071 0.119
CLIP L14 score top 20% 2.6M 0.042 0.051 0.165 0.100 0.151
CLIP L14 score top 30% 3.8M 0.051 0.055 0.190 0.108 0.172
CLIP L14 score top 40% 5.1M 0.050 0.054 0.173 0.107 0.167
CLIP L14 score top 50% 6.4M 0.045 0.052 0.164 0.110 0.159
CLIP L14 score top 75% 9.6M 0.035 0.043 0.164 0.111 0.150
CLIP L14 score top 90% 11.5M 0.031 0.038 0.154 0.109 0.143
Image-based clustering (ImageNet1k) 2.9M 0.043 0.047 0.178 0.112 0.158
Image-based clustering (ImageNet21k) 4.5M 0.035 0.045 0.154 0.112 0.146
Image-based sampling, α=0 12.8M 0.019 0.030 0.144 0.091 0.126
Image-based sampling, α=0.2 12.8M 0.031 0.036 0.133 0.094 0.131
Image-based sampling, α=0.5 12.8M 0.032 0.038 0.129 0.091 0.124
Image-based sampling, α=1 12.8M 0.021 0.028 0.128 0.076 0.116
Image-based sampling, α=2 12.8M 0.011 0.017 0.116 0.063 0.099
ImageNet distance (L14, top 30%) and English 2.0M 0.031 0.039 0.163 0.097 0.145
ImageNet distance (L14, top 20%) 2.6M 0.030 0.035 0.155 0.096 0.136
ImageNet distance (L14, top 30%) 3.9M 0.034 0.041 0.151 0.099 0.138
ImageNet distance (L14, top 40%) 5.1M 0.036 0.040 0.151 0.110 0.143
Text-based clustering (ImageNet1k) 427K 0.009 0.016 0.120 0.055 0.096
Text-based clustering (ImageNet21k) 3.2M 0.046 0.052 0.169 0.112 0.156
Text-based sampling with average score, α=0 12.8M 0.011 0.020 0.128 0.078 0.112
Text-based sampling with average score, α=0.5 12.8M 0.023 0.035 0.127 0.088 0.127
Text-based sampling with average score, α=1 12.8M 0.040 0.044 0.163 0.105 0.154
Text-based sampling with average score, α=1.2 12.8M 0.038 0.045 0.150 0.101 0.142
Text-based sampling with max score, α=0 12.8M 0.012 0.020 0.126 0.073 0.107
Text-based sampling with max score, α=0.5 12.8M 0.025 0.033 0.134 0.089 0.128
Text-based sampling with max score, α=1 12.8M 0.040 0.046 0.159 0.106 0.149
Text-based sampling with max score, α=1.2 12.8M 0.040 0.050 0.161 0.106 0.151
Intersect IN1k image clustering and CLIP B32 score top 30% 1.4M 0.049 0.053 0.150 0.095 0.147
Intersect IN1k image clustering and CLIP L14 score top 30% 1.4M 0.039 0.045 0.162 0.089 0.144
Intersect IN21k image clustering and CLIP B32 score top 30% 2.1M 0.052 0.057 0.179 0.103 0.166
Intersect IN21k image clustering and CLIP L14 score top 30% 2.1M 0.047 0.053 0.176 0.101 0.162
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Table 22: Baseline results for the filtering track, medium scale.

Filtering Training ImageNet ImageNet VTAB Retrieval Average over
dataset size dist. shifts 38 datasets

No filtering 128M 0.176 0.152 0.259 0.174 0.254
Random subset (75%) 96.0M 0.175 0.154 0.265 0.174 0.254
Random subset (50%) 64.0M 0.171 0.151 0.258 0.170 0.249
Random subset (25%) 32.0M 0.155 0.136 0.246 0.162 0.237
Random subset (10%) 12.8M 0.107 0.095 0.210 0.121 0.198
Random subset (1%) 1.3M 0.009 0.017 0.102 0.064 0.090
Caption length 87.5M 0.199 0.172 0.275 0.182 0.271
Image size 77.8M 0.189 0.163 0.248 0.182 0.255
English (fasttext) 63.0M 0.214 0.182 0.290 0.188 0.280
English (fasttext) and caption length 47.8M 0.226 0.193 0.297 0.192 0.289
English (fasttext), caption length, and image size 29.8M 0.226 0.193 0.284 0.192 0.280
English (cld3) 25.6M 0.200 0.175 0.296 0.181 0.275
English (cld3) and caption length 22.9M 0.204 0.175 0.287 0.181 0.273
English (cld3), caption length, and image size 14.6M 0.179 0.159 0.243 0.167 0.243
CLIP B32 score top 1% 1.3M 0.025 0.037 0.140 0.072 0.125
CLIP B32 score top 3% 3.9M 0.093 0.096 0.205 0.103 0.186
CLIP B32 score top 10% 12.8M 0.231 0.199 0.305 0.152 0.294
CLIP B32 score top 20% 25.7M 0.279 0.234 0.337 0.178 0.325
CLIP B32 score top 30% 38.4M 0.285 0.240 0.355 0.187 0.333
CLIP B32 score top 40% 51.3M 0.273 0.227 0.333 0.193 0.318
CLIP B32 score top 50% 64.0M 0.256 0.219 0.322 0.196 0.311
CLIP B32 score top 75% 96.1M 0.211 0.180 0.301 0.185 0.285
CLIP B32 score top 90% 115M 0.189 0.165 0.279 0.178 0.270
CLIP B32 threshold at 0.3 + English filter 9.4M 0.208 0.184 0.292 0.156 0.272
CLIP B32 threshold at 0.28 + English filter 13.0M 0.230 0.198 0.307 0.170 0.287
CLIP B32 threshold at 0.3 25.9M 0.282 0.233 0.340 0.178 0.327
CLIP B32 score 1% to 30% 37.1M 0.287 0.238 0.347 0.187 0.329
CLIP B32 score 2% to 30% 35.9M 0.288 0.238 0.338 0.184 0.325
CLIP B32 score 5% to 30% 32.0M 0.281 0.230 0.352 0.187 0.334
CLIP L14 score top 1% 1.3M 0.014 0.025 0.136 0.059 0.109
CLIP L14 score top 3% 3.9M 0.065 0.077 0.176 0.088 0.158
CLIP L14 score top 10% 12.8M 0.198 0.183 0.283 0.142 0.274
CLIP L14 score top 20% 25.7M 0.260 0.225 0.326 0.173 0.317
CLIP L14 score top 30% 38.4M 0.273 0.230 0.338 0.183 0.323
CLIP L14 score top 40% 51.2M 0.262 0.226 0.330 0.192 0.322
CLIP L14 score top 50% 64.1M 0.254 0.218 0.322 0.199 0.310
CLIP L14 score top 75% 96.1M 0.212 0.180 0.287 0.190 0.281
CLIP L14 score top 90% 115M 0.188 0.164 0.258 0.178 0.262
Image-based clustering (ImageNet1k) 29.2M 0.268 0.213 0.319 0.193 0.307
Image-based clustering (ImageNet21k) 45.1M 0.238 0.198 0.304 0.193 0.292
Image-based sampling, α=0 128M 0.170 0.150 0.266 0.162 0.250
Image-based sampling, α=0.2 128M 0.249 0.193 0.292 0.168 0.280
Image-based sampling, α=0.5 128M 0.269 0.196 0.301 0.163 0.280
Image-based sampling, α=1 128M 0.207 0.145 0.264 0.130 0.236
Image-based sampling, α=2 128M 0.118 0.082 0.207 0.094 0.179
ImageNet distance (L14, top 30%) and English 19.8M 0.212 0.158 0.272 0.148 0.257
ImageNet distance (L/14, top 20%) 25.8M 0.193 0.138 0.276 0.149 0.250
ImageNet distance (L/14, top 30%) 38.5M 0.212 0.159 0.283 0.165 0.266
ImageNet distance (L/14, top 40%) 51.3M 0.212 0.165 0.273 0.171 0.267
Text-based clustering (ImageNet1k) 4.3M 0.099 0.090 0.173 0.095 0.165
Text-based clustering (ImageNet21k) 31.7M 0.255 0.215 0.328 0.183 0.301
Text-based sampling with average score, α=0 128M 0.136 0.110 0.213 0.114 0.207
Text-based sampling with average score, α=0.5 128M 0.222 0.178 0.273 0.157 0.265
Text-based sampling with average score, α=1 128M 0.245 0.204 0.302 0.189 0.289
Text-based sampling with average score, α=1.2 128M 0.231 0.200 0.298 0.182 0.284
Text-based sampling with max score, α=0 128M 0.140 0.116 0.242 0.114 0.223
Text-based sampling with max score, α=0.5 128M 0.229 0.190 0.290 0.155 0.279
Text-based sampling with max score, α=1 128M 0.247 0.209 0.300 0.183 0.290
Text-based sampling with max score, α=1.2 128M 0.235 0.200 0.298 0.178 0.285
Intersect IN1k image clustering and CLIP B32 score top 30% 14.2M 0.305 0.243 0.342 0.182 0.322
Intersect IN1k image clustering and CLIP L14 score top 30% 14.0M 0.297 0.239 0.346 0.170 0.323
Intersect IN21k image clustering and CLIP B32 score top 30% 21.1M 0.298 0.244 0.347 0.184 0.330
Intersect IN21k image clustering and CLIP L14 score top 30% 20.8M 0.290 0.241 0.339 0.182 0.323
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Table 23: Baseline results for the filtering track, large scale.

Filtering Training ImageNet ImageNet VTAB Retrieval Average over
dataset size dist. shifts 38 datasets

No filtering 1.28B 0.459 0.378 0.426 0.305 0.428
Random subset (75%) 960M 0.456 0.379 0.435 0.302 0.434
Random subset (50%) 640M 0.453 0.377 0.427 0.298 0.424
Random subset (25%) 320M 0.447 0.373 0.424 0.294 0.425
Random subset (10%) 128M 0.426 0.350 0.417 0.286 0.414
Random subset (1%) 12.8M 0.135 0.118 0.219 0.105 0.216
Caption length 874M 0.474 0.392 0.438 0.322 0.435
Image size 777M 0.466 0.375 0.421 0.316 0.419
English (fasttext) 630M 0.500 0.414 0.449 0.337 0.452
English (fasttext), caption length, and image size 298M 0.516 0.423 0.446 0.353 0.448
English (cld3) 256M 0.486 0.405 0.462 0.343 0.448
CLIP B32 score top 10% 128M 0.543 0.440 0.471 0.307 0.473
CLIP B32 score top 20% 257M 0.578 0.465 0.516 0.338 0.505
CLIP B32 score top 30% 384M 0.578 0.466 0.525 0.349 0.517
CLIP B32 score top 40% 512M 0.560 0.454 0.512 0.352 0.501
CLIP B32 score top 50% 640M 0.546 0.450 0.504 0.353 0.494
CLIP B32 threshold at 0.3 + English filter 94.3M 0.553 0.447 0.511 0.351 0.491
CLIP B32 threshold at 0.28 + English filter 130M 0.553 0.453 0.510 0.365 0.491
CLIP B32 threshold at 0.3 258M 0.579 0.464 0.501 0.338 0.495
CLIP L14 score top 10% 128M 0.528 0.444 0.482 0.293 0.477
CLIP L14 score top 20% 257M 0.570 0.466 0.524 0.331 0.511
CLIP L14 score top 30% 384M 0.578 0.474 0.538 0.342 0.520
CLIP L14 score top 40% 512M 0.564 0.462 0.533 0.346 0.520
CLIP L14 score top 50% 641M 0.548 0.455 0.539 0.345 0.518
Image-based clustering (ImageNet1k) 294M 0.572 0.454 0.483 0.353 0.471
Image-based clustering (ImageNet21k) 450M 0.527 0.433 0.468 0.337 0.461
Text-based clustering (ImageNet1k) 42.7M 0.419 0.355 0.340 0.210 0.353
Text-based clustering (ImageNet21k) 317M 0.561 0.465 0.465 0.352 0.466
Intersect IN1k image clustering and CLIP B32 score top 30% 143M 0.632 0.498 0.525 0.371 0.517
Intersect IN1k image clustering and CLIP L14 score top 30% 140M 0.631 0.508 0.546 0.369 0.527
Intersect IN21k image clustering and CLIP B32 score top 30% 211M 0.605 0.481 0.531 0.363 0.509
Intersect IN21k image clustering and CLIP L14 score top 30% 208M 0.506 0.416 0.466 0.300 0.461

Table 24: Baseline results for the filtering track, xlarge scale.

Filtering Training ImageNet ImageNet VTAB Retrieval Average over
dataset size dist. shifts 38 datasets

No filtering 12.8B 0.723 0.612 0.611 0.441 0.611
CLIP B32 score top 30% 3.84B 0.764 0.640 0.628 0.474 0.628
CLIP B32 threshold at 0.28 + English filter 1.3B 0.755 0.637 0.624 0.503 0.627
CLIP L14 score top 20% 2.56B 0.761 0.649 0.630 0.452 0.626
CLIP L14 score top 25% 3.2B 0.768 0.656 0.621 0.465 0.628
CLIP L14 score top 30% 3.84B 0.764 0.655 0.643 0.468 0.641
Intersect IN1k image clustering and CLIP L14 score top 30% 1.38B 0.792 0.679 0.652 0.489 0.653
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R Datasheet

R.1 Motivation

Q1 For what purpose was the dataset created? Was there a specific task in mind? Was
there a specific gap that needed to be filled? Please provide a description.

• The purpose of DataComp and the associated CommonPool dataset is to enable study
of what makes a strong image-text dataset, which supports a broad range of applications.
Prior work mainly focuses on data curation in the context of supervised datasets and
smaller scales. For a fuller treatment see Section 2. In our initial release of DataComp
we focus on 38 downstream image classification and image retrieval tasks. We additionally
explore two fairness datasets. For details see Section 3.5 and Appendix N.

Q2 Who created the dataset (e.g., which team, research group) and on behalf of which
entity (e.g., company, institution, organization)?

• DataComp and CommonPool were created by a group of researchers with the following
affiliations, listed in alphabetical order: Allen Institute for Artificial Intelligence (AI2),
Apple, Columbia University, Graz University of Technology, Hebrew University, Juelich
Supercomputing Center, LAION, Research Center Juelich, StabilityAI, Tel Aviv University,
University of Illinois Urbana-Champaign, University of Texas at Austin, University of
Washington.

Q3 Who funded the creation of the dataset? If there is an associated grant, please provide
the name of the grantor and the grant name and number.

• Compute for this research was generously provided by StabilityAI. For more specific
acknowledgments, see the acknowledgment section at the end of the main paper.

Q4 Any other comments?

• No.

R.2 Composition

Q5 What do the instances that comprise the dataset represent (e.g., documents,
photos, people, countries)? Are there multiple types of instances (e.g., movies, users, and
ratings; people and interactions between them; nodes and edges)? Please provide a description.

• Each instance is a pair of url and corresponding image alt-text. The url points to an
image that a user can then try to download. Each sample is also tagged with metadata,
discussed in Q25.

Q6 How many instances are there in total (of each type, if appropriate)?

• There are 12.8B instances in CommonPool. For breakdowns and statistics see Appendix
I.

Q7 Does the dataset contain all possible instances or is it a sample (not necessarily
random) of instances from a larger set? If the dataset is a sample, then what is the larger
set? Is the sample representative of the larger set (e.g., geographic coverage)? If so, please
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describe how this representativeness was validated/verified. If it is not representative of the
larger set, please describe why not (e.g., to cover a more diverse range of instances, because
instances were withheld or unavailable).

• We find ∼88B possible samples in common crawl. These samples are globally shuffled to
ensure i.i.d. sampling for all sampling based parts of the downstream pipeline. Of these
samples we attempt to download ∼40B samples. Due to various download issues, such as
dead links and throttling, we are able to successfully download ∼16.8B samples. After
NSFW filtering and evaluation set deduplication we end up with ∼13.1B viable samples,
from which we randomly sample 12.8B for CommonPool. For a complete treatment
and visualization of our data processing funnel, see Appendix H. For each sample we also
release metadata shown in Table 9.

Q8 What data does each instance consist of? “Raw” data (e.g., unprocessed text or images)
or features? In either case, please provide a description.

• Each sample contains an image url for download and an associated alt-text caption.
Additionally, each sample contains metadata fields shown in Table 9 (e.g., image aspect
ratio and CLIP features).

Q9 Is there a label or target associated with each instance? If so, please provide a
description.

• We do not provide any category labels; however, the text associated with each image can
be considered a soft, noisy label for each sample. Such labels are common in modern image-
text training paradigms (e.g., image-text representation alignment, image captioning
objectives, text-conditional image generation objectives, etc.).

Q10 Is any information missing from individual instances? If so, please provide a description,
explaining why this information is missing (e.g., because it was unavailable). This does not
include intentionally removed information, but might include, e.g., redacted text.

• No.

Q11 Are relationships between individual instances made explicit (e.g., users’ movie
ratings, social network links)? If so, please describe how these relationships are made
explicit.

• No.

Q12 Are there recommended data splits (e.g., training, development/validation, testing)?
If so, please provide a description of these splits, explaining the rationale behind them.

• No. The test tasks are existing image classification tasks. We run a deduplication model
to try to prevent test set contamination in CommonPool.

Q13 Are there any errors, sources of noise, or redundancies in the dataset? If so, please
provide a description.

• CommonPool is sourced from Common Crawl, which can be thought of as a snapshot
of the internet. Hence, there can be considerable noise (e.g., alt-text being unrelated to
its associated image), duplicate data, etc.
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Q14 Is the dataset self-contained, or does it link to or otherwise rely on external
resources (e.g., websites, tweets, other datasets)? If it links to or relies on external
resources, a) are there guarantees that they will exist, and remain constant, over time; b) are
there official archival versions of the complete dataset (i.e., including the external resources as
they existed at the time the dataset was created); c) are there any restrictions (e.g., licenses,
fees) associated with any of the external resources that might apply to a future user? Please
provide descriptions of all external resources and any restrictions associated with them, as well
as links or other access points, as appropriate.

• The data is not self-contained and rather links other external resources on the internet.
Links point to resources distributed across the internet. There is no guarantee that the
resources will exist in perpetuity or that that the resources will not change. To mitigate
against data poisoning in future CommonPool downloads, we release SHA256 hashes of
images. Due to the size of the dataset, it is not possible to provide it in an archival form.

Q15 Does the dataset contain data that might be considered confidential (e.g., data
that is protected by legal privilege or by doctor–patient confidentiality, data that
includes the content of individuals’ non-public communications)? If so, please provide
a description.

• The dataset is comprised of data that was readily available on the internet at the time of
our download. However, it is possible that the dataset contains confidential information
(e.g., private data that is hosted publicly for nefarious reasons or out of ignorance of said
data being confidential).

Q16 Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? If so, please describe why.

• Considering the plurality of people and their backgrounds across the world, it is highly
likely that there is content in CommonPool that may upset people. Common Crawl
scrapes the internet, which has pornographic, hateful, racist, sexist, and otherwise
abhorrent and toxic material. While we attempt to do thorough NSFW filtering, these
methods are not 100% accurate. At the 12.8B scale at which we operate it is highly likely
that there is still toxic content in the dataset. We consider the dataset as a research
artifact and hope future work will look critically at CommonPool in the hopes of
developing even better safety filters.

Q17 Does the dataset relate to people? If not, you may skip the remaining questions in this
section.

• People may appear in the dataset; however, in an effort to preserve privacy, our
downloading tooling automatically blurs all detected faces in CommonPool images.

Q18 Does the dataset identify any subpopulations (e.g., by age, gender)?

• While CommonPool does not explicitly identify subpopulations in its metadata, it is
plausible to extract such information for some images using the corresponding textual
caption.

Q19 Is it possible to identify individuals (i.e., one or more natural persons), either
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directly or indirectly (i.e., in combination with other data) from the dataset? If
so, please describe how.

• We conjecture that even with our face blurring procedure, it may still be possible to
identify individuals. Face blurring relies of a face detection model, which could fail (See
Appendix G for experimental validation of the employed detector). It is also possible to
identify certain celebrities or athletes, who may wear distinctive clothing that is associated
with them. It is also likely that names are contained in textual captions, though it is not
guaranteed that these names correspond to people in images due to the inherent noisiness
of internet captions.

Q20 Does the dataset contain data that might be considered sensitive in any way (e.g.,
data that reveals racial or ethnic origins, sexual orientations, religious beliefs,
political opinions or union memberships, or locations; financial or health data;
biometric or genetic data; forms of government identification, such as social
security numbers; criminal history)? If so, please provide a description.

• Yes. CommonPool is created using images and corresponding alt-text that are available
on the public internet. Given the 12.8B scale of CommonPool, it is highly likely that
there is sensitive data in the dataset. To mitigate against making sensitive content more
accessible, we 1) run NSFW image filtering and 2) NSFW text filtering when generating
CommonPool, discarding all samples that are flagged. Additionally we 3) provide
automatic face blurring in our CommonPool download scripts to blur all detected faces.

Q21 Any other comments?

• No.

R.3 Collection Process

Q22 How was the data associated with each instance acquired? Was the data directly
observable (e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or
indirectly inferred/derived from other data (e.g., part-of-speech tags, model-based guesses for
age or language)? If data was reported by subjects or indirectly inferred/derived from other
data, was the data validated/verified? If so, please describe how.

• Data is directly downloaded from the public internet.

Q23 What mechanisms or procedures were used to collect the data (e.g., hardware
apparatus or sensor, manual human curation, software program, software API)?
How were these mechanisms or procedures validated?

• We iterate on the LAION-5B data collection process, making an effort to emphasize safety.
We ran python based processing scripts to parse Common Crawl dumps, download images,
filter our NSFW content, deduplicate samples against downstream tests sets, blur faces,
and compute CLIP features. We ran processes on 100s of AWS CPU nodes for Common
Crawl parsing and data download. Other steps were run on one of StabilityAI’s GPU
cluster. For software links see Q37. For software validation related to NSFW content
filtering and face blurring see Appendices E and G respectively. In brief, for NSFW image
filtering, we validate against commercial APIs and on the NSFW test set introduced in
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LAION-5B. For face detection (used for face blurring), we evaluate against commercial
APIs and on the FairFace dataset. We find strong performance for both modules.

Q24 If the dataset is a sample from a larger set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific sampling probabilities)?

• See Q7.

Q25 Who was involved in the data collection process (e.g., students, crowdworkers,
contractors) and how were they compensated (e.g., how much were crowdworkers
paid)?

• The researching authors were involved in the data collection as an open source effort. No
researchers were compensated specifically for their involvement in this project.

Q26 Over what timeframe was the data collected? Does this timeframe match the
creation timeframe of the data associated with the instances (e.g., recent crawl of
old news articles)? If not, please describe the timeframe in which the data associated with
the instances was created.

• Data was downloaded between December 2022 and March 2023. The urls are collected
from Common Crawl dumps between 2014 and 2022. Common Crawl dumps may include
urls from the early days of the internet. Hence, the download/collection timeframe does
not match the creation timeframe. Additionally, future users of CommonPool and its
subsets will have to download data themselves using our tooling.

Q27 Were any ethical review processes conducted (e.g., by an institutional review
board)? If so, please provide a description of these review processes, including the outcomes,
as well as a link or other access point to any supporting documentation.

• Our dataset collection process iterates on the LAION-5B process, which found IRB review
was not necessary as they “do not intervene with the people depicted in the data as well as
the data being public." Additionally, the NeurIPS ethics review found no serious ethical
issues with LAION-5B. We take even more stringent safety measures than the original
LAION-5B dataset, in that we filter out data that is flagged as NSFW by our detection
pipeline and blur detected faces in CommonPool in our download scripts. All this being
said, a formal ethics review has not been conducted to date.

Q28 Does the dataset relate to people? If not, you may skip the remaining questions in this
section.

• Yes. People may appear in the dataset. Detected faces are blurred when downloading
CommonPool with our tooling.

Q29 Did you collect the data from the individuals in question directly, or obtain it via
third parties or other sources (e.g., websites)?

• We collect data from websites across the internet.

Q30 Were the individuals in question notified about the data collection? If so, please
describe (or show with screenshots or other information) how notice was provided, and provide
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a link or other access point to, or otherwise reproduce, the exact language of the notification
itself.

• Individuals were not notified about the data collection.

Q31 Did the individuals in question consent to the collection and use of their data? If
so, please describe (or show with screenshots or other information) how consent was requested
and provided, and provide a link or other access point to, or otherwise reproduce, the exact
language to which the individuals consented.

• Following our usage of Common Crawl and https://github.com/rom1504/img2dataset
for download images, we respect robots.txt files, which specify parts of websites that a
crawler may access. It is, however, possible that images of people, medical images, etc.
were uploaded to the internet without a person’s consent. To mitigate against such safety
concerns we make an effort to do rigorous NSFW filtering and blur all detected faces
automatically in our download tooling.

Q32 If consent was obtained, were the consenting individuals provided with a mechanism
to revoke their consent in the future or for certain uses? If so, please provide a
description, as well as a link or other access point to the mechanism (if appropriate).

• In conjunction with LAION, we use https://laion.ai/dataset-requests/ to monitor
user takedown requests. We will also make an effort to provide a user with the url at
which their sensitive content is hosted—if they do not have this information already—, so
they can take further action as they see fit (e.g., contacting the host to request that the
content is taken down from the internet).

Q33 Has an analysis of the potential impact of the dataset and its use on data subjects
(e.g., a data protection impact analysis) been conducted? If so, please provide a
description of this analysis, including the outcomes, as well as a link or other access point to
any supporting documentation.

• We conduct a fairness evaluation on models trained on CommonPool and its derivative.
See Appendix P for details. Birhane, et al. 2021 conduct an extensive study in the
context of LAION-400M, which is an image-text dataset also sourced from Common Crawl,
finding a plethora of dangerous and unsafe data. Our dataset differs from LAION-400M
in that we conduct NSFW filtering and face blurring for detected faces in our download
tooling. However, since CommonPool is created from the internet, it is still likely that
CommonPool contains some harmful data.

Q34 Any other comments?

• No.

R.4 Preprocessing, Cleaning, and/or Labeling

Q35 Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or
bucketing, tokenization, part-of-speech tagging, SIFT feature extraction, removal
of instances, processing of missing values)? If so, please provide a description. If not,
you may skip the remainder of the questions in this section.
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• Yes. See Q7. For more details see Appendix H.

Q36 Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data
(e.g., to support unanticipated future uses)? If so, please provide a link or other access
point to the “raw” data.

• Raw data is not available or distributed due to safety considerations. We distribute only
urls that are in the dataset on HuggingFace—and not urls of images our preprocessing
flagged as NSFW.

Q37 Is the software used to preprocess/clean/label the instances available? If so, please
provide a link or other access point.

• We use the following, open-source software to aid in data processing:

– Apache Spark: https://spark.apache.org

– Ray: https://www.ray.io

– img2dataset: https://github.com/rom1504/img2dataset

– OpenAI CLIP: https://github.com/openai/CLIP

– Near dedulicate detector: https://github.com/lyakaap/ISC21-Descriptor-Track-1st

– Face detector: https://github.com/deepinsight/insightface

– Detoxify, for detecting toxic language: https://github.com/unitaryai/detoxify

– A modified version of the following NSFW image detector: https://github.com/
LAION-AI/CLIP-based-NSFW-Detector. Specifically, we use the dataset used to
train this model to train our own 4-layer MLP classifier.

Q38 Any other comments?

• No.

R.5 Uses

Q39 Has the dataset been used for any tasks already? If so, please provide a description.

• The full dataset (and subsets) have been used to train several CLIP models at various
scales and compute budgets as presented in our main paper. We evaluate these models
zero-shot on 38 downstream image classification and retrieval tasks. We additionally
evaluate on 2 fairness datasets. See Section 3.5 and Appendix N for more details.

Q40 Is there a repository that links to any or all papers or systems that use the dataset?
If so, please provide a link or other access point.

• No. However, there is a leaderboard associated with DataComp. Interested parties can
investigate the submissions and further study publications that make use of our data.
See: https://www.datacomp.ai/leaderboard.html.

Q41 What (other) tasks could the dataset be used for?
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• The dataset could also be used for training image captioning models and language-
conditional image generation models. Note: generative image models trained on CommonPool
are not expected to generate recognizable human faces as our download tooling automatically
blurs detected faces. CommonPool could be used for sociological studies, for example,
examining societal biases or to better understand what is on the public internet.

Q42 Is there anything about the composition of the dataset or the way it was collected
and preprocessed/cleaned/labeled that might impact future uses? For example,
is there anything that a future user might need to know to avoid uses that could result in
unfair treatment of individuals or groups (e.g., stereotyping, quality of service issues) or other
undesirable harms (e.g., financial harms, legal risks) If so, please provide a description. Is
there anything a future user could do to mitigate these undesirable harms?

• In our initial analysis of models trained on CommonPool and its subsets, we notice
disproportionate misclassification rates for identifying Black women (see Section P for
more details on our fairness and bias evaluation). CommonPool and its derivatives are
not intended for production ready products, including but not limited to those related
to race, gender identity or expression, ethnicity, sexual orientation, age, socioeconomic
status, disability, religion, national origin or creed. CommonPool is not suitable for
any software that makes decisions involving people. CommonPool is collected from
the internet and hence reflects many of the biases, unfairness, and stereotypes currently
existing in our societies.

Q43 Are there tasks for which the dataset should not be used? If so, please provide a
description.

• CommonPool in its current form or the subsets presented in this paper should not be
used in software that makes decisions related to people. The known biases make deploying
software, especially widely decimated production-level products, built on CommonPool
incredibly irresponsible. CommonPool is designed as a research artifact for academic
exploration. We also do not condone the use of CommonPool in surveillance or military
applications.

Q44 Any other comments?

• No.

R.6 Distribution

Q45 Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? If so, please
provide a description.

• Yes. We use HuggingFace datasets for public release.

Q46 How will the dataset be distributed (e.g., tarball on website, API, GitHub)? Does
the dataset have a digital object identifier (DOI)?

• The dataset will be distributed via HuggingFace datasets at https://huggingface.co/
datasets/mlfoundations/datacomp_pools/tree/main
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Q47 When will the dataset be distributed?

• DataComp will be available starting May 2023.

Q48 Will the dataset be distributed under a copyright or other intellectual property
(IP) license, and/or under applicable terms of use (ToU)? If so, please describe this
license and/or ToU, and provide a link or other access point to, or otherwise reproduce, any
relevant licensing terms or ToU, as well as any fees associated with these restrictions.

• We distribute the url-text sample and metadata under a standard CC-BY-4.0 licence.

Q49 Have any third parties imposed IP-based or other restrictions on the data associated
with the instances? If so, please describe these restrictions, and provide a link or other access
point to, or otherwise reproduce, any relevant licensing terms, as well as any fees associated
with these restrictions.

• We do not copyright samples in the dataset.

Q50 Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances? If so, please describe these restrictions, and provide a link or other
access point to, or otherwise reproduce, any supporting documentation.

• No.

Q51 Any other comments?

• No.

R.7 Maintenance

Q52 Who will be supporting/hosting/maintaining the dataset?

• HuggingFace currently hosts the url-text pairs and metadata. The DataComp team will
be responsible for maintaining the dataset.

Q53 How can the owner/curator/manager of the dataset be contacted (e.g., email
address)?

• We can be contacted at contact@datacomp.ai.

Q54 Is there an erratum? If so, please provide a link or other access point.

• Currently there are no errata. If issues are discovered, we will communicate with the
public via our website https://datacomp.ai.

Q55 Will the dataset be updated (e.g., to correct labeling errors, add new instances,
delete instances)? If so, please describe how often, by whom, and how updates will be
communicated to users (e.g., mailing list, GitHub)?

• At the present time there is no intention to update CommonPool for scientific reasons.
However, we will respond to user takedown requests (see Q56). CommonPool is
inherently noisy and the purpose of releasing it is to encourage researchers in the
community to study dataset cleaning in the context of image-text samples.
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Q56 If the dataset relates to people, are there applicable limits on the retention of the
data associated with the instances (e.g., were individuals in question told that
their data would be retained for a fixed period of time and then deleted)? If so,
please describe these limits and explain how they will be enforced.

• We will use the following website, https://laion.ai/dataset-requests, for user takedown
requests, where “Sample ID” is the sample uid.

Q57 Will older versions of the dataset continue to be supported/hosted/maintained?
If so, please describe how. If not, please describe how its obsolescence will be communicated to
users.

• This is the first version of DataComp and the associated CommonPool dataset. We
do not intend to maintain deprecated version of CommonPool. We will communicate
deprication notices through our website: https://datacomp.ai.

Q58 If others want to extend/augment/build on/contribute to the dataset, is there a
mechanism for them to do so? If so, please provide a description. Will these contributions
be validated/verified? If so, please describe how. If not, why not? Is there a process
for communicating/distributing these contributions to other users? If so, please provide a
description.

• All alterations to the dataset will be handled on a case-by-case basis.

Q59 Any other comments?

• No.
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